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Composition Relation between Gap Solitons and Bloch Waves in Nonlinear Periodic Systems
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We show with numerical computation and analysis that Bloch waves, at either the center or edge of the
Brillouin zone, of a one dimensional nonlinear periodic system can be regarded as infinite chains
composed of fundamental gap solitons (FGSs). This composition relation between Bloch waves and
FGSs leads us to predict that there are n families of FGSs in the nth band gap of the corresponding linear
periodic system, which is confirmed numerically. Furthermore, this composition relation can be extended
to construct a class of solutions similar to Bloch waves but with multiple periods.
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With the advance of experimental techniques, a wide
variety of nonlinear periodic systems has arisen in recent
years. They include nonlinear waveguide arrays [1,2],
optically induced photonic Ilattices [3,4], and Bose-
Einstein condensates (BECs) in optical lattices [5,6].
These systems have been intensively researched, ranging
from superfluidity [7] and instability [7-9] to the genera-
tion of solitons [1-6] and vortex [10].

In these nonlinear periodic systems, there are two com-
pletely different kinds of stationary states: Bloch wave and
gap solitons. Bloch waves, which exist in both linear and
nonlinear periodic systems, are extensive solutions that
spread over the whole system [7]. In contrast, gap solitons
exist only in nonlinear periodic systems and are localized
in space [3]. In this work, we focus primarily on a class of
solitons called fundamental gap solitons (FGSs), whose
main peaks are localized inside one unit cell [11].

We show that a relation, which we call composition
relation, exists between Bloch waves and FGSs. In this
relation, the FGSs can be viewed as building blocks for
Bloch waves at either the center or the edge of the Brillouin
zone (BZ) that have the same propagation constants (or
chemical potentials) as FGSs. With this composition rela-
tion between Bloch waves and gap solitons, we predict that
there are n families of FGSs in the nth band gap of the
corresponding linear periodic system. This is confirmed by
our numerical computation. Only two families of FGSs
were known [11,12]: one is called fundamental gap soliton
and the other subfundamental gap soliton [13]. From how
these two different FGSs are named, it seems that people
have not been expecting other types of FGSs. Furthermore,
we can generalize this composition relation to construct
with FGSs extensive stationary states, which are similar to
Bloch waves but with multiple periods.

Consider a one dimensional defocusing nonlinear peri-
odic system described by the equation,
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where V(x) is a periodic potential. When ¢ is z, the above
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equation describes a light wave propagating along the z
direction in a nonlinear media that is periodic along the x
direction [1,2]. If £ is time ¢, then the equation describes a
BEC in an optical lattice [6,7]. Without loss of generality,
we choose & = z and V(x) = v cos(x).

Both Bloch waves and gap solitons are stationary solu-
tions of Eq. (1), which are of the form W(x, &) = ¢(x) X
exp(—iumé). p is called propagation constant for light
wave (or chemical potential for a BEC). ¢(x) obeys the
z-independent equation,

29 Ve + 1ok = us. @

1
2

Without the cubic term, the above equation is a linear
periodic system and admits only Bloch wave solutions.
Bloch waves are defined as ¢(x) = exp(ikx) i, ;(x) with
Yax(x) = ¢, (x + 277), where k is the Bloch wave vector
and n is the band index. Associated with each Bloch wave
.1 (x), there is a propagation constant u,(k). As k varies
through the BZ, u, (k) makes up Bloch bands. In Fig. 1(a),
we have plotted the two lowest Bloch bands LB and LB,
for the linear periodic system. Notice that there is a large
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FIG. 1. Linear and nonlinear Bloch bands for » = 1.5. Dotted

lines are linear Bloch bands. Label LBi stands for the ith linear
Bloch band. (a) The first nonlinear band (solid line) in the first
linear band gap with N" = 1.6908; (b) The second (dashed line)
and first (solid line) nonlinear bands in the second band gap with
N = 1.5268 and 4.8437, respectively.
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band gap between the two linear Bloch bands, where no
physical solution is allowed.

The nonlinear term in Eq. (2) does not destroy these
Bloch waves and Bloch bands but only modifies them. This
nonlinear effect is completely determined by the norm
N = [27 | (x)|?dx, which can be regarded as the
strength of nonlinearity. In Fig. 1(a), the lowest nonlinear
Bloch band (k) is plotted for N = 1.6908. Clearly, the
Bloch band has moved up relative to its linear counterpart
LB, due to nonlinearity, and its shape has also changed. If
N is lowered to zero, this band (k) will move down and
be reduced to LB;. When N is increased, u (k) will move
up continuously with no limit. Nonlinear Bloch waves and
Bloch bands are found numerically with the method in
Ref. [8].

Besides Bloch waves, Eq. (2) has also gap soliton solu-
tion. However, for a gap soliton, its u can only take values
inside the linear band gaps. This is why it is called gap
soliton and why it only exists in nonlinear periodic sys-
tems. Gap soliton solutions are found by integrating Eq. (2)
numerically using the Newton relaxation method [13,14].
To check the convergence of the results, we substitute the
found gap soliton solutions into Eq. (2) and compute the
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FIG. 2 (color online). Bloch waves of the first nonlinear band
and FGSs in the first band gap. Dotted (black), solid (green), and
dashed (red) lines represent Bloch wave, FGS, and gap wave,
respectively. ¥ = 1.5. The Bloch waves in (a), (b), and (c) are at
the BZ center and the Bloch wave in (d) is at the BZ edge.
(a) N = 0.0027, u = —0.92, line at bottom indicates potential;
(b)y N =1.6908, u=—03; (c) N =3.2194, u=0.151;
(d): N =1.6738, u = —0.3.

maximum difference between the left and right sides of
Eq. (2).

We discover that the localized FGS and the extensive
Bloch wave are related to each other. We consider first the
situation in Fig. 1(a), where the first nonlinear Bloch band
lies entirely inside the first linear band gap. We focus on the
Bloch wave at the center of the BZ. Since its propagation
constant u lies in the band gap, there exists a FGS for this
value of w. In Fig. 2(b), we have plotted the Bloch wave
and the corresponding FGS together. We notice that the
FGS matches very well with the individual peak of the
Bloch wave. This direct observation suggests that a Bloch
wave at the center of the BZ can be viewed as a chain of
FGSs pieced together. We have also compared FGSs and
Bloch waves for other parameters in Figs. 2(a) and 2(c).
Figure 2(a) is for the case of u near the top of the first
linear Bloch band LB; Fig. 2(c) is for the case of u close
to the bottom of the second linear Bloch band LB,. It is
apparent that the matching between the FGS and the Bloch
wave in Fig. 2(a) is not as good as in the other two cases.
This mismatch implies that there is no simple mathemati-
cal expression for this relation. Later, we shall show that
this relation can lead to predictions that are confirmed by
our numerical computation.

A similar relation exists between a Bloch wave at the
edge of the BZ and a FGS. The only difference is that the
FGS is put together with alternative signs as shown in
Fig. 2(d). For ease of reference, we call this relation
composition relation. In fact, a finite number of FGSs
can also be used to form a bigger gap soliton as shown in
Fig. 2. These bigger gap solitons are called gap waves in
Ref. [15], which can be regarded as intermediate states
between FGSs and Bloch waves.

We turn to the second linear band gap, which presents a
key difference: two different nonlinear Bloch bands can be
lifted into this gap. As one increases continuously the norm
N from zero, first the second nonlinear Bloch band u, (k)
will be moved up into the second band gap; then the first
nonlinear Bloch band u (k) will also be lifted into the
second band gap as shown in Fig. 1(b) when N is large
enough. Since the Bloch waves in these two different bands
are very distinct characteristically, one needs two different
families of FGSs to construct them if the composition
relation between FGS and Bloch waves also holds in the
second linear band gap. Two different FGSs indeed exist as
reported in Refs. [11,12]. In Fig. 3, we have plotted the
Bloch waves of the second nonlinear band and the corre-
sponding FGS, which was called subfundamental gap soli-
ton in Ref. [13]. The matching is very good as in the first
band gap.

Expecting this trend to hold for any band gap, we predict
that there are n different families of FGSs inside the nth
linear band gap. As the norm I\ increases, all the non-
linear Bloch bands u,,(k) with m =< n will move succes-
sively into the nth band gap. To construct the Bloch waves
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FIG. 3 (color online). Bloch waves of the second nonlinear
band and FGSs of the second family in the second band gap.
v =15, u=0.6. Dotted (black), solid (green), and dashed
(red) lines represent Bloch wave, FGS, and gap wave, respec-
tively. (a) Bloch wave at the center of the BZ, N = 1.5268.
Line at bottom mimics potential. (b) Bloch wave at the edge of
the BZ, N = 1.7417.

belonging to these n different bands, we need n different
families of FGSs. This prediction is confirmed by our
numerical computation for the 3rd band gap. In Fig. 4,
the third FGS is shown with the corresponding Bloch
waves. To our best knowledge, this third family of FGSs
has not been reported before. In order to observe experi-
mentally gap solitons, the initial input pattern should be
close to desired soliton profiles [3]. So, to observe the third
family FGS, one can use two localized laser beams, whose
wavelength is much shorter than the period of the wave-
guide, to form an interference pattern with three large
peaks in a unit cell of the periodic waveguide.
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FIG. 4 (color online). Bloch waves of the third nonlinear band
and FGSs of the third family in the third band gap. v = 1.5, u =
1.4. Dotted (black), solid (green), and dashed (red) lines repre-
sent Bloch wave, FGS, and gap wave, respectively. (a) Bloch
wave at the center of the BZ, N = 2.0521. Line at bottom
mimics potential. (b) Bloch wave at the edge of the BZ, N =
1.0242.

One may have noticed that the first family of FGSs has
one peak in a unit cell, the second family has two peaks,
and the third has three. This can be explained as follows.
The Bloch wave in the first Bloch band, which uses the first
family of FGSs as its building block, comes from the
ground state of an individual well of the periodic potential
V(x). The Bloch wave of the second band, which is con-
structed with the second family of FGSs, originates from
the first excited state of an individual well; and so on. As
the nth bound state has (n — 1) nodes, the nth family of
FGSs should have n peaks. This analysis also indicates that
the composition relation is similar to the relation between
Bloch waves and bound states of an individual well in
linear periodic systems.

This composition relation has another prediction. From
the band structure shown in Fig. 1, we see that the norm N
has to be over a critical value to lift the first nonlinear
Bloch band into the second band gap while there is no such
critical value for moving the second nonlinear band into
the second band gap. This is true in general: one has to
increase N over a critical value to move the mth nonlinear
Bloch band into the nth (n > m) linear band gap while
there is no critical value to move the nth nonlinear Bloch
band into the nth gap. This observation, combined with the
composition relation between Bloch wave and FGS, leads
us to predict that the norm of the mth family of FGSs in the
nth band gap is always bigger than a critical value. For a
gap soliton, its norm N is defined as N = [ | (x)|dx.
We have computed numerically how N of FGSs changes
with w and plotted it in Fig. 5, where the prediction is seen
confirmed. For example, the second family of FGSs in the
third band gap has always N >5.0152. We have also
plotted how the norm N of Bloch waves changes with
. As seen in Fig. 5, N and JN are very close to each other
and have similar dependence on . Note that the mth
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FIG. 5 (color online). Norms of both FGSs and nonlinear
Bloch waves at the center and edge of the BZ as a function of
p. v = 1.5. Shaded areas are linear bands. Dotted (red), dashed
(green), solid (black) lines represent Bloch waves at the BZ
center, Bloch waves at the BZ edge, and FGSs, respectively.
Inset figure is for the first band gap at a lower potential v = 0.4.
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FIG. 6 (color online). Two types of triple-periodic solutions.
Dotted (black), dashed (red), and solid (green) lines are for
triple-periodic solution, bigger soliton composed by FGS fi-
nitely, and FGS, respectively. Lines at the bottom of each figure
mimic potential. v = 1.5, u = 0.6.

family of FGSs in the nth gap does not exist for all values
of u inside the gap. The existence of such a cutoff on u for
gap solitons has been reported before in Refs. [12,15].

The intuitive picture that larger gap solitons, such as gap
waves [15], can be viewed as a chain of FGSs has been
floating in the community [11,14]. However, since there is
no simple mathematical expression for this relation, there
is always some doubt that this relation truly exists. What
we have done is to firmly establish this kind of relation
between Bloch waves and FGSs with analysis and numeri-
cal computation. It is interesting to note that there exist the
periodic solutions for a nonlinear Schrodinger equation
with no external potential and these solutions can be
viewed as trains of dark or gray solitons as well [16].

The stabilities of gap solitons and gap waves are ana-
lyzed. Our analysis indicates that the first family FGSs
shown in Fig. 5 are mostly stable. They become unstable
only in a small area near the band edges in the third gap.
The stabilities of the second family of FGSs in the second
gap and the third family of FGSs in the third gap are
similar: both of them are stable in the areas with smaller
propagation constant and are unstable beyond a critical
value of w. All the second family of FGSs in the third
gap are unstable. The stability properties of gap waves are
closely related to their corresponding Bloch waves and are
independent of how many wells they occupy. Our stability
analysis is confirmed by the beam propagation method
with initial random noise.

This composition relation between gap soliton and
Bloch wave can be generalized to construct new solutions.
In constructing Bloch waves from the FGS, FGSs are
arranged with either the same or alternative signs between
neighboring pairs. We find that other arrangements of signs
between neighboring pairs of FGSs can lead to multiperi-
odic solutions for Eq. (1). For example, we are able to
recover all the even-periodic solutions found in Ref. [17].

We are also be able to find the solutions of odd periods,
which were speculated to exist in Ref. [17]. Two solutions
of triple periods are shown in Fig. 6. Unfortunately, both of
the solutions are unstable.

To confirm the relation existing in any periodic media,
we have repeated our study for a periodic potential V(x)
that describes waveguide arrays profile [1,2]. The results
are essentially the same, indicating that the detailed profile
of V(x) is not important.
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