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We present an exact analytical solution of the fundamental systems of quasi-one-dimensional spin-1=2

fermions with infinite repulsion for an arbitrary confining potential. The eigenfunctions are constructed by

the combination of Girardeau’s hard-core contacting boundary condition and group theoretical method,

which guarantees the obtained states to be simultaneously the eigenstates of S and Sz and satisfy

antisymmetry under odd permutation. We show that the total ground-state density profile behaves like

the polarized noninteracting fermions, whereas the spin-dependent densities display different properties

for different spin configurations. We also discuss the splitting of the ground states for large but finite

repulsion.
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Introduction.—The experimental progress in manipulat-
ing cold atoms in effective one-dimensional (1D) wave-
guides [1,2] has stimulated extensive theoretical and
experimental study of the 1D strongly correlated atomic
systems. Particularly, the experimental realization of
Tonks-Girardeau (TG) gases [3,4] has allowed us to study
the fermionization of Bose gas in the strongly interacting
limit. More recently, an interacting 1D Fermi gas with
tunable interaction strengths has also been experimentally
realized [5], which offers the opportunity of studying the
1D Fermi gases even in the TG limit. To understand the
physical properties of the cold atom in the strongly inter-
acting limit, exact solutions and some refined methods
capable of dealing with strong correlations are especially
important [6–9]. In the infinitely repulsive limit the many-
body state of a TG gas can be constructed via a Bose-Fermi
mapping [9]. Despite its long history, the generalization to
systems including spin degree of freedom is a highly non-
trivial problem and only recently was tackled [10,11].
Nevertheless, the construction of the exact wave function
for the fundamental system of indistinguishable spin-1=2
Fermi gas in the TG limit is still lacking despite its great
importance [12]. Different from the Bose system whose
ground state (GS) is proved to be a degenerated ferromag-
netic state [13], the GS of a Fermi system generally falls
into the state with lowest total spin value S [8]. As we shall
clarify later, the mixed symmetry of the spin function
renders the generalization of Bose-Fermi mapping to the
spin-1=2 Fermi system difficult and very challenging. In
this work we present for the first time an analytically exact
solution of quasi-1D Fermi gases with infinite repulsion in
trapped potentials.

Model.—We consider a quasi-1D system with N
spin-1=2 fermions tightly confined in an elongated poten-
tial trap which is described by an effective 1D Hamiltonian

H ¼ XN
i¼1

�
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X
i<j

�ðxi � xjÞ; (1)

with g1d being the effective 1D interaction strength [14].
For a harmonic potential, VðxiÞ ¼ 1

2m!2
xx

2
i . Despite inten-

sive research [15–17], there has been rarely rigorous results
on the interacting spin-1=2 fermion systems except the
homogenous Yang-Gaudin model [6,7]. Our exact solution
in the strong coupling limit for the fundamental spin-1=2
Fermi system will provide a firm touchstone for various
approximate methods [15–17] and also deepen our under-
standing on the few-body system.
Construction of exact ground-state wave function.—In

general, one can represent the many-body wave functions
in the space-spin form as �ðx1; �1; . . . ; xN; �NÞ. Inspired
by the seminal work of Girardeau, the effect of an infinitely
strong interaction can be reduced to a hard-core boundary
condition

�ðx1; �1; . . . ; xN;�NÞjxi¼xj;�i¼��j
¼ 0: (2)

In addition the Pauli exclusion principle enforces the
boundary condition �ðx1; �1; . . . ; xN; �NÞjxi¼xj;�i¼�j

¼ 0

for two particles with the same spins. Therefore, the
general contacting boundary condition for a TG Fermi
gas can be represented as �ðxi ¼ xjÞ ¼ 0, which is irrele-

vant to the spin configurations. Now it is straightforward
to observe that the wave function, which is composed
of Slater determinant of N ¼ N" þ N# orthonormal orbi-

tals �1ðxÞ; . . . ; �NðxÞ occupied by either component of
Fermions, fulfills the above boundary condition.
Explicitly, we have

c Aðx1; . . . ; xNÞ ¼ ðN!Þ�ð1=2Þ det½�jðxiÞ�j¼1;...;N
i¼1;...;N (3)

with �jðxiÞ the eigenstate of the single particle

Hamiltonian Hi ¼ � @
2

2m
@2

@x2i
þ VðxiÞ. So far the spin part

of wave function is not considered yet. Since H is spin
independent, H is commutable with the total spin operator

Ŝ ¼ P
iŜi, where Ŝi is the spin operator of the ith particle.

This implies that the system possesses a global SU(2)
symmetry and the eigenstates of H are simultaneous ei-
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genstates of Ŝ2 and Ŝz. Thus, only the eigenstates with the
largest eigenvalue Sz ¼ S are needed to be considered and
the remaining eigenstates can be calculated from them by

the lowering operator Ŝ�. In addition, the total wave
function of N indistinguishable fermions has to be anti-
symmetric under transposition of any two particles.

According to (3), the GS corresponds to the fully filled
state with the lowest N orbital occupied and excited states
are generated by occupying higher orbitals. Similar to the
spinor boson case, the GS is highly degenerate in the TG
limit due to the different spin configurations. Among the
family of degenerate GSs, the ferromagnetic spin state with
Sz ¼ S ¼ N=2 is a product of all spins up, which is totally
symmetric in permutations. The total wave function, anti-
symmetric under transpositions, takes a factorized form
� ¼ c Aðx1; . . . ; xNÞ�1ð1Þ . . .�1ðNÞ, where �1ðiÞ denotes
the up-spin and �2ðiÞ the down-spin. For the system with
fixed up-spin and down-spin particles, the ferromagnetic
state with Sz ¼ N=2�m is also totally symmetric in
permutations and degenerated with the polarized state,
where m � N# and n � N" ¼ N �m are the numbers of

particles with down-spin and up-spin, respectively. So far,
only the ferromagnetic state is constructed. An important
issue here is to discuss how the GS degeneracy in the TG
limit is split when g1d is large but finite, or alternatively, to
find the GS which could be a good approximation of the
true wave function when the interaction strength is very
large but not infinite. According to the Lieb-Mattis theo-
rem [8], for a finite interaction strength, the state with a
lower S has a lower GS energy; therefore, the GS for the
system with a fixed n and m is the state with S ¼ Sz ¼
N=2�m. Intuitively, the repulsive interaction term will
contribute a positive energy to a state with S < N=2, but it
does not contribute to a ferromagnetic state with all spins
oriented in the same direction; therefore, the Lieb-Mattis
theorem seems counterintuitive. One can understand this
problem by noticing that a ferromagnetic state with S ¼
N=2 should occupy N different orbits due to the Pauli
principle, whereas for the state with lower S, the particles
with opposite spins are allowed to occupy overlapping
states and thus lower the energy.

The spin function with S < N=2, described by a Young
diagram [n, m], is not totally symmetric. Nevertheless, we
can still represent a wave function formally as a product
of c A and c S, where c S denotes a symmetric function
composed of linear combination of product of sign func-
tions and spin functions. Next we shall resort to the group
theoretical method to construct c S.

Before presenting our result, we first introduce some
notations of group theory [18]. Let B� ¼ fb1; b2; . . . ; bmg
be a set ofm different integers where 1 � b1 < b2 < . . .<
bm � N. The n ¼ N �m remaining different integers a1,
a2; . . . ; an, satisfying ai � bj and 1 � a1 < a2 < . . .<

an � N are also determined by the set B�. There are
N!=ðm!n!Þ different sets B�. bj ¼ nþ j when � ¼ 1.

Corresponding to a set B�, we define a permutation P�,

P� ¼ 1 2 . . . n nþ 1 nþ 2 . . . N
a1 a2 . . . an b1 b2 . . . bm

� �
:

Remind that P1 is the identical permutation. The left coset
of a subgroup Sn � Sm of SN , where Sn and Sm are,
respectively, the permutation groups of the first n objects
and the last m objects, is denoted by P�ðSn � SmÞ.
Introduce Q1 ¼

Q
n
i¼1

Q
N
j¼nþ1 sgnðxi � xjÞ, with the sign

function sgnðxi � xjÞ ¼ ðxi � xjÞ=jxi � xjj, and Q� ¼
P�Q1. A spin state with S ¼ Sz ¼ N=2�m is denoted

by P�Y
½n;m�
1 Z1 ¼ Y½n;m�

� Z�, which is a basis tensor of the

tensor subspace Y½n;m�
� T of SU(2) of rank N with the

highest weight [18], where Z1 ¼ �1ð1Þ . . .�1ðnÞ�2ðnþ
1Þ . . .�2ðNÞ, Z� ¼ P�Z1, Y½n;m�

� ¼ P�Y
½n;m�
1 P�1

� , and

Y½n;m�
1 ¼ ðPR2Sn

RÞðPT2Sm
TÞfQm

j¼1½E�ðj nþ jÞ�g, where
E is the identical permutation and (j nþ j) is the trans-
position between j and nþ j. Our definition for a Young
operator [18] coincides with that in [19], but different from
that in [20]. The spin states with S ¼ Sz ¼ N=2�m based
on one definition are the linear combinations of those on
the other.
Theorem.—The totally symmetric wave function con-

structed by the product of the sign functions Q� and the
basis tensors Z� is

c S ¼
� XN!=ðn!m!Þ

�¼1

P�

�
fQ1ðY½n;m�

1 Z1Þg

¼ XN!=ðn!m!Þ

�¼1

fY½n;m�
� Q�gZ�: (4)

Proof.—SinceQ1 andY
½n;m�
1 Z1 both are invariant in left-

multiplying by any element of the subgroup Sn � Sm, the
action of

P
�P� is proportional to that of the sum over all

elements in SN so that c S is invariant in SN . The last
formula in (4) is obtained by rearrangement. �
Now it is easy to check that the ground state

� ¼ c Ac S (5)

with c A and c S given by (3) and (4) fulfills all the require-
ments of symmetry and hard-core boundary condition and

are simultaneously the eigenstates of Ŝ2 and Ŝz with S ¼
Sz ¼ ðN" � N#Þ=2. As a concrete example, for N ¼ 3 with

S ¼ 1=2, c S ¼ P
3
�¼1ð3Q� � 1ÞZ�, where the identityP3

�¼1 Q� ¼ 1 is used for simplification. We note that our

constructed exact solution has the same spin structure
described by the Young diagram [n, m] as the true wave
function when the strength is very strong but not infinite
[8]. Therefore, our result is expected to interpolate analyti-
cally between the finite-repulsion case and the limit case
with infinite repulsion.
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Density distributions.—The spin-dependent reduced

one-body density matrices are defined as ��ðx; x0Þ ¼
C
RQ

N
i¼2 dxi�

yðx; X0ÞPð1Þ
� �ðx0; X0Þ, where X0 ¼

ðx2; . . . ; xNÞ, Pð1Þ
";# ¼ ð1� �̂ð1Þ

z Þ=2 with � ¼" ð#Þ corre-

sponding to þð�Þ and C are normalized constants fixed
by the conditions

R
dx��ðxÞ ¼ N�. Here the spin-

dependent single particle densities ��ðxÞ ¼ ��ðx; xÞ are
the diagonal elements of the corresponding reduced den-
sity matrices. The total density is defined as �ðxÞ ¼
�"ðxÞ þ �#ðxÞ. After some algebra, we can prove that the

total GS density is identical to the density of a polarized
N-particle free fermion system which takes the following
simple form �ðxÞ ¼ P

lj�lðxÞj2, where the summation is
over the lowest N ¼ nþm single particle states. For the
1D harmonic trap, the orbital are the oscillator eigenstates.
In contrast with the ferromagnetic ground state, where
��ðxÞ ¼ ðN�=NÞ�ðxÞ, there is no a simple expression of
the spin-dependent density for the general state corre-
sponding to Young diagram [n, m]. Nevertheless, one can
calculate ��ðxÞ directly from the exact ground-state wave
functions. In Fig. 1, we display the GS density distributions
of a five-particle systems composed of three spin-up and
two spin-down fermions. Despite the same total density
distributions, the spin-dependent distributions are appar-
ently different from that of the ferromagnetic state. Here
the total density profile exhibits five peaks corresponding
to that the wave function is composed of the lowest five or-
bitals. However, due to the spin-dependent term of Eq. (4),
the spin-dependent density profiles are reorganized so that
the spin-up part and spin-down part avoid overlapping
together and show alternative peak structure to lower the
energy. Although the exact many-body wave function is
constructed, the calculation of the density distribution and
momentum distribution for a large system remains a diffi-
cult task due to the time consuming to calculate multi-
dimensional integrals. Nevertheless, some robust features
are found to be not sensitive to the size. For example, the
peaks in the spin-up and spin-down density distributions

appear alternatively and the density distributions also show
the parity symmetry.
The momentum distribution can be directly obtained

from the Fourier transformation of the reduced density

matrices n�ðkÞ ¼ ð2�Þ�1
R
dxdx0eikðx�x0Þ��ðx; x0Þ. For

the ferromagnetic ground state, we have n�ðkÞ ¼
ðN�=NÞPN�1

l¼0 j ~�lðkÞj2 with ~�lðkÞ the Fourier transforma-

tion of the lth oscillator eigenstate. Similarly, such a simple
expression does not generally hold true for the spin state
with the Young diagram [n, m]. As shown in Fig. 2, the
momentum distribution displays quite different behavior
for the spin singlet and ferromagnetic state. Comparing

with the noninteracting case of g1d ¼ 0, where n�ðkÞ ¼PN��1
l¼0 j ~�lðkÞj2, the momentum distribution develops a

wide tail.
Comparison with system with large but finite repul-

sion.—Apart from infinite repulsion limit, there is no ana-
lytical solution available for the harmonic potential.
However, for the small particle system, we can apply the
exact diagonalization method [21] to calculate its GS
properties and compare with our analytical result in the
infinite limit. In terms of the fermionic creation and de-

struction operators ayi� and ai� of the axial harmonic
oscillator, we get the many-body Hamiltonian correspond-
ing to (1)

H ¼ @!x

X
i;�

�
iþ 1

2

�
âyi�âi� þU

X
ijkl

Iijklâ
y
i"â

y
j#âk#âl"; (6)

where Iijkl ¼ lx
R1
�1 dx�iðxÞ�jðxÞ�kðxÞ�lðxÞ are the di-

mensionless interaction integrals with lx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!x

p
and

U ¼ g1d=lx. The Hamiltonian (6) can be exactly diagonal-
ized in the truncated basis of eigenstates of the harmonic
oscillator and then the GS density can be calculated nu-
merically. Figure 3(a) shows the three-particle state corre-
sponding to the Young diagram [2,1], compared to the
results obtained from exact diagonalization (ED) of (6)

FIG. 1 (color online). The GS density distributions of Fermi
gas in the limit of infinite repulsion with N" ¼ 3 and N# ¼ 2.

FIG. 2 (color online). The GS momentum distributions n�ðkÞ
for the system with N" ¼ N# ¼ 2. Solid line corresponds to spin

singlet, dotted line to ferromagnetic state and dashed line to the
case of free fermion for comparison.
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with parameter U ¼ 15@!x. The numerical results are in
perfect agreement with our exact results, which indicates
that the limit of infinite repulsion is practically reached at
U ¼ 15@!x [21,22]. Instead, as displayed in the inset of
Fig. 3(b), the spin-dependent distribution for the degener-
ate ferromagnetic GS state displays quite different behav-
iors from the true GS of the system with large finite
repulsion. We also show how the GS energy of the state
with S ¼ 1=2 changes versus the increase of interaction
strength in Fig. 3(b). In the large repulsion limit, it tends to
become degenerate with the ferromagnetic state. It would
be interesting to compare our results with Ref. [23], where
the stability of Fermi gases with the presence of attractive
p-wave interaction has been discussed. In the limit case
with the absence of a p-wave interaction, its phase diagram
is consistent with our conclusion; i.e., the GS is an anti-
ferromagnetic state.

Experimental realizability and detections.—As the
Feshbach resonances in qausi-1D two-component Fermi
system have been observed [5], in principle the two-
component fermionic TG gas can be realized. For the
high-dimensional system, the physics in the infinitely in-
teraction limit (the unitary limit) as well as the BEC
and BCS crossover around the unitary limit have been
studied extensively. The main challenge for realization of
quasi-1D Fermi system comes from that both the Fermi
energy and temperature should be much lower than the
transverse confining energy. The spin-dependent density
distribution might be detected within the current tech-
niques which allows for measurement of specie-dependent
properties [24].

Summary.—We have constructed the exact eigenstates of
the fundamental system of quasi-1D spin-1=2 fermions

with infinite � repulsion by means of group theoretical
method. While the infinite repulsion is described by a hard-
core boundary condition, the group theoretical construc-
tion guarantees our wave function automatically fulfilling
the permutation symmetry and being the eigenstates of S
and Sz. The construction scheme and the formula for spin
densities are valid independent of the trapping potential
and the particle number. For large but finite repulsion we
have calculated the ground state for a few-particle system
numerically by using the exact diagonalization method.
The numerical result is found to be in excellent agreement
with our analytical result. Our construction of exact eigen-
states is valid even when a Zeeman term in the Hamiltonian
exists because it does not change the nature of the states.
This work is supported by NSF of China No. 10821403,

No. 10574150, No. 10675050 and the National Program
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FIG. 3 (color online). (a) Comparison of GS density distribu-
tions obtained by ED for the system with N" ¼ 2 and N# ¼ 1
with the analytical result of S ¼ 1=2 state. (b) The energy versus
the interaction for different spin state. The density distribution
for the ferromagnetic state (inset).
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