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We examine the impact of a perpendicular magnetic field on the creation mechanism of electron-

positron pairs in a supercritical static electric field, where both fields are localized along the direction of

the electric field. In the case where the spatial extent of the magnetic field exceeds that of the electric field,

quantum field theoretical simulations based on the Dirac equation predict a suppression of pair creation

even if the electric field is supercritical. Furthermore, an arbitrarily small magnetic field outside the

interaction zone can bring the creation process even to a complete halt, if it is sufficiently extended. The

mechanism for this magnetically induced complete shutoff can be associated with a reopening of the mass

gap and the emergence of electrically dressed Landau levels.
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The possibility to break down the electrodynamical
vacuum by an external supercritical field to create
electron-positron pairs has been one of the most astonish-
ing theoretical predictions of quantum electrodynamics
[1]. Recent experimental efforts aim at the development
of highly powered laser systems with the ultimate goal
to be able to focus the beam on a minute spot where the
fields are sufficiently intense to spark the vacuum. While
an experimental observation is still challenging, it is clear
that the interaction zone will be rather localized.

Laser-triggered pair creation has become a hot research
topic [2], and many works have examined how one could
use additional external electric or magnetic fields to control
the pair-creation process [3–8]. The first studies date back to
Sauter [9] and Schwinger [10]. In the limiting case of an
infinitely extended electric field, the long-time pair-creation
rate per unit volume �S is given by the Schwinger expres-
sion (in atomic units):

�S ¼ E3=2

2�2c1=2
exp

�
��c3

E

�
: (1)

The typical spontaneous pair production requires strong
electric fields of amplitude E � 1:3� 1016 V=cm or
E � c3 in atomic units. We focus in this Letter on how
the pair-creation process can be controlled by a static
magnetic field that is perpendicular to the supercritical
electric field. For infinitely extended fields [11], it is pos-
sible to Lorentz transform to a reference frame, in which
the magnetic field vanishes and the electric field is given by

Eeffð1Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½E2 � B2�p
. To maintain supercriticality in this

case, we require that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½E2 � B2�p � c3. This means that the

magnetic field has to have at least the amplitude B �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½E2 � c6�p
in order to shut off the pair-creation

mechanism.
In this Letter we stress the importance of the finite

extension of the interaction zone. It turns out that because
of this finiteness the pair-creation process can be controlled
for magnetic field strengths that are much smaller than
previously assumed or suggested by the above Lorentz
transformation-based argument. In fact, we will show
that in contrast to the predictions above (for homogenous
fields) any magnetic field of arbitrarily small strength can
bring the pair-creation process even to a complete halt, if
its spatial extent WB is just sufficiently large. This follows
from the generalized condition for the onset of super-

criticality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2WE

2 � B2WB
2�

q
� c2, which we will derive

below, where WE (or WB) denotes the width of the electric
(or magnetic) field. This shutoff scenario is dynamic in the
sense that the pair-creation probability reveals an oscilla-
tory behavior as a function of time. Space-time-resolved
quantum field theoretical simulations permit us to relate
the shutoff to a reopening of the mass gap of the Dirac
energy spectrum and to associate the oscillations with
electrically dressed Landau levels.
If the electric field is spatially localized, the Schwinger

expression [Eq. (1)] using Eeffð1Þ becomes invalid as a
description solely in terms of the field strength is no longer
sufficient, and one has to incorporate also the corresponding
spatial information, or equivalently, choose scalar and vector
potentials. Localized interaction zones are characterized
by a sharp threshold condition for supercriticality that can
be expressed via a potential (such as V0 > 2c2) and not
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necessarily in terms of the field amplitude alone. According
to Eq. (1), any static electric field is capable of creating pairs,
even with an infinitesimal amplitude. It is therefore not clear
that we obtain a meaningful ratewhen the peak amplitude of
a localized field is simply inserted in this formula.

To obtain a better estimate for the long-time creation rate,
we can use an expression, which was originally proposed by
Hund [12], for the purpose of electric field alone:

RH ¼ 1=ð2�Þ
Z

TðEÞdE: (2)

Here TðEÞ denotes the quantum mechanical transmission
coefficient for an incoming electron with energy E that
scatters off the same supercritical field configuration
described by the electric and magnetic fields. In the special
case of an infinite interaction zone, this approach reproduces
Eq. (1). Hund’s formula can be generalized if a magnetic
field is present. It turns out that in the limit of equal width for
electric and magnetic fields, one can describe the scattering
in this quantum mechanical framework by an effective

scalar potential Veff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½V2

0 � A2
0�

q
that is related to the

peak scalar and vector potentials V and A.
Quantum field theoretical (QFT) simulations with

space-time resolution for external field configurations
with arbitrary temporal and spatial characteristics are noto-
riously difficult as the requirements on CPU time and
memory are presently still exorbitantly high. However, a
recent work [13] has introduced a computational algorithm
that permits us to study the decay process of the vacuum for
the case where the magnetic field is perpendicular to the
electric field and both fields have arbitrary spatial exten-
sions along this polarization direction. It was shown that
the three-dimensional (3D) dynamics can be reduced to a
quasi-one-dimensional set of equations. In this particular
configuration the canonical momentum along the E� B
direction is conserved and just has to be integrated over to
obtain 3D data for the total pair creation.

While these high-performance computations still take
several days, they permit us to compute time-dependent
pair-creation probabilities and spatial densities of the cre-
ated electrons and positrons. In technical terms, a set of
coupled time-dependent Dirac equations have to be solved
repeatedly on a numerical space-time lattice. The Dirac
Hamiltonian is given by H ¼ c�½p�AðrÞ=c� þ c2�þ
Vðr; tÞ, where � and � are the usual 4� 4 Dirac matrices,
the three components of the vector potential are given by
AðrÞ¼ ð0;A0ðtanhðx=WBÞþ1Þ=2;0Þ, and the scalar poten-
tial is Vðr; tÞ ¼ V0ðtanhðx=WEÞ þ 1ÞfðtÞ=2. These assign-
ments correspond to an E andB field pointing in the x and z
direction, respectively, and both fields vary along x within
a range of about 2W around x ¼ 0. The temporal pulse
shape of the electric field is denoted by fðtÞ. The maximum
field strengths (at x ¼ 0) are given by E ¼ �dVðxÞ=dx�
V0=ð2WEÞ and B ¼ dAyðxÞ=dx� A0=ð2WBÞ so V0 and A0

are measured in c2, W in units of 1=c, and E and B in c3.

To compute the time evolution of the electron-positron
field operator, the Dirac equation has to be solved for each
energy eigenstate of the entire Hilbert space associated
with the Hamiltonian with V ¼ 0, but A0 � 0. The latter
step is based on the development of sufficiently efficient
split-operator algorithms; for more details see Ref. [14].
In these simulations, we have assumed that the magnetic
field is present all the time, while the supercritical electric
field is turned on and off smoothly via fðtÞ. The data
presented below correspond to the pair-creation probability
after the supercritical field has been turned off.
Let us now present the results of these simulations. In

Fig. 1 we show the temporal growth of the number of crea-
ted electron-positron pairs NðtÞ as a function of the inter-
action time t for seven different sizes WB of the magnetic
field. All the other parameters, such as the strengths of
both fields (E ¼ 12:5c3, B ¼ 0:6c3) and the size of the
electric field (WE ¼ 0:1=c) are the same. All curves show
an identical short-time behavior, whose details are solely
governed by the turn-on shape of the supercritical electric
field. The associated created pairs are not necessarily
induced by supercriticality, but by the high frequencies
contained in the Fourier spectrum of the temporal turn-on
pulse. In principle, these could be minimized by an adia-
batic pulse, which owing to the long interaction time is not
practical from a computational point of view.
To set the scale for our discussion of the long-time

behavior, for comparison we have also included (dashed
curve) the data for B ¼ 0. Because of the fields’ finite
extensions the Schwinger rate of Eq. (1) does not give an
accurate estimation of pair-creation rate, but the slope still
follows Hund’s formula [Eq. (2)]. For example, the slope
measured from Fig. 1 according to QFT is 1:461� 104

while RH ¼ 1:419� 104, an agreement within 2.9%.
Please note that in the other seven curves the B field was
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FIG. 1. The final number of created electron-positron pairs as
a function of the interaction time for seven different widths of
the magnetic field. Parameters used include E ¼ 12:5c3,
WE ¼ 0:1=c, and B ¼ 0:6c3. B ¼ 0 case is the upper dashed line.

PRL 109, 253202 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

21 DECEMBER 2012

253202-2



chosen so small (E=B � 21) that forWB ¼ WE the asymp-
totic slope is nearly identical to the case for B ¼ 0. This is
also consistent with the fact that in this case the effective

electric field
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½E2 � B2�p ð¼ 12:49c3Þ is only slightly

smaller than E itself (¼ 12:5c3).
As the simulations are repeated for larger spatial exten-

sions of the magnetic field, the situation changes drastically.
The slope (long-term rate of pair creation R) of NðtÞ
decreases rapidly as we increase WB. For WB ¼ 5WE the
slopeR decreased by 26% from 1:461� 104 to 1:075� 104,
while for WB ¼ 10WE it is only R ¼ 3:420� 103, a 76%
reduction. For comparison, in this range the QFT creation
rates R are well described by Hund’s approach, which pre-
dicts RH ¼ 1:0458� 104 and 3:267� 103 for WB ¼ 5WE

and 10WE. This corresponds to a mismatch of only 2.8%
and 4.4%, respectively. If WB � 12:5WE the suppression
reaches 100%, corresponding to R ¼ 0 and a complete
shutoff of pair creation because of the magnetic field. This
shutoff might generalize to more complicated geometries
where the electric field is also localized in the other two
spatial directions, as long as it is encompassed by the mag-
netic field. It is remarkable that for even larger values of
WB the pair creation starts to exhibit an oscillatory behavior,
moving around a constant amount. For this range of WB >
1:25=c the rate predicted by the Hund formula, Eq. (2),
begins to become inapplicable.

Let us now illuminate these findings from a spectral
perspective. This will give us a physical picture for the
mechanisms leading to the shutoff and the associated oscil-
lations, and it will also provide us with analytical estimates
for how the shutoff value for WB and the frequency of the
oscillation depend on the characteristics of the two fields.
To do so, we analyze the energy eigenspectrum of the Dirac
Hamiltonian where the electric field is turned on. Prior
studies of the supercritical breakdown of the vacuum trig-
gered by a supercritical Coulomb field have associated the
onset condition for supercriticality with the ‘‘diving’’ [1] of
the ground state into the continuum of negative energy
eigenstates. In our case, a supercritical electric field leads
to the complete overlap of the positive and negative energy
continua.

In Fig. 2 we have displayed the numerically obtained
energy eigenvalues of H for 100 different sizes of WB. We
graph only those that are dynamically important for the initial
vacuum state. All parameters are identical to those used
in Fig. 1. The top figure is for the simpler case of py ¼ 0

and gives us a first qualitative insight. For small magnetic
field widthsWB the black regions show the complete overlap
between the positive and negative energy states, consistent
with the fact that the system is supercritical and pairs are
created continuously as the positive slope R in Fig. 1 indi-
cated. As WB is increased, the previously overlapping
positive and negative energy states start to separate from
each other such that the mass gap opens again and also
new discrete states emerge.

A more quantitative picture is obtained for the dynami-
cally most relevant momentum py ¼ �BWB=c. As a result,

the continuum edge Eþ ( ¼ c2 for py ¼ 0) curves upward

followingEþ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½c4þB2WB

2�
q

. AtWB ¼ 1:25=c, the mass

gap opens. This is precisely where in Fig. 1 the system
changed from supercritical to subcritical and � vanished.

The lower continuum edge is described by E� ¼
2EWE �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½c4 þ B2WB

2�
q

as indicated by the dark curve

superimposed on the spectra. The region of supercriticality
for finite interaction regions is therefore characterized by

Eþ < E�, or equivalently by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2WE

2 � B2WB
2�

q
� c2,

as we mentioned in the introduction. From this genera-
lized condition for supercriticality we can easily setffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½E2WE

2 � B2WB
2�

q
¼ c2 to determine the characteristic

shutoff width for the magnetic field, denoted by WBy.
It corresponds to the crossing point of both continua,

FIG. 2. The energy spectrum of the total Hamiltonian as a
function of the spatial size of the magnetic field WB. All
parameters are the same as in Fig. 1 (except the numerical box
length is 0.6, instead of 1.0 as used in Fig. 1). The top (bottom)
figure shows the spectra for py ¼ 0 (py ¼ �BWB=c). It is

apparent that when WB > 1:25=c the two continua begin to
separate from each other. In the band gap area new discrete
energy levels emerge.
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Eþ ¼ E�, and we obtain WBy ¼ B�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2WE

2 � c4Þ
q

. In

other words, even the most minute magnetic field strength
B is fully sufficient to turn the entire pair-creation process
off, if its spatial size WB is chosen only sufficiently large,
WB >WBy.

In addition to the separation of the two continua, the data
in Fig. 2 reveal a new set of discrete states that emerge
as the width WB is increased beyond WBy. While the two

continuum edges Eþ and E� are symmetric around WE E,
the energies of the dynamically relevant discrete states are
not. This is because the positive and negative energy states
with the same spin have different magnetic moments. From
Fig. 2 we find the first bound level (with negative energy)
occurs atWB � 1:498=cwhile the next several levels (with
alternating signs of energy) require WB � 2:104=c,
2:504=c, 2:891=c, 3:194=c, 3:495=c, and 3:703=c, respec-
tively. We have assigned these discrete states with the
quantum numbers n� and the corresponding energies
Eðn�Þ. While each continuum and discrete state in Fig. 2
is a complicated superposition of free energy eigenstates
with positive and negative energies, one could view the
discrete states as electrically dressed Landau levels.

The actual energies of the discrete levels at each
WB value in Fig. 2 permit us also to estimate the frequen-
cies for NðtÞ in Fig. 1. For example, for WB ¼ 3=c the
energies of the ground state of the negative levels and the
ground state of the positive levels would predict an oscil-
lation period of 2�=½Eð0þÞ � Eð0�Þ� ¼ 5:47� 10�4,
which agrees (within 2%) with the observed period of
5:36�10�4 in Fig. 1. ForWB ! 1, the period approaches

2�=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4 þ 4Bc

p
� 2:5c2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4 þ 2Bc

p
Þ, which for our

value of B is 4:05� 10�4.
In the limit of WB ! 1, the energies become indepen-

dent of WB and approach asymptotically the values

EðnþÞ ¼ "þ2nþ1 and Eðn�Þ ¼ "�2nþ1 þ V0, where "�n ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4 þ ð2nþ 1þ �ÞBcp
are the (positive and negative)

energy Landau levels with� ¼ þ1 or�1. Here we choose
different values of� for the positive and negative energies to
keep the spin the same, as transition between the positive
and negative energy manifolds does not change the spin.
Here Eðn�Þ denotes the nth positive (nþ) or negative (n�)
discrete state in Fig. 2, while "�n represents the nth positive
("þn ) or negative ("�n ) Landau level, respectively. The scalar
potential can be regarded essentially as a step jump with
magnitude V0. As V0 is sufficiently large, the effective
potential in the combined electric and magnetic fields
becomes a half of a harmonic potential, which is closed
on one end by a steep potential wall. In such a potential, the
wave function must vanish at the potential wall. As a result
the Landau levels with n ¼ 0; 2; 4; . . . are absent and only
odd orders survive.

To see the validity of the above energy formula for
large magnetic field widths, we pick nþ ¼ 0 to find
Eð0þÞ ¼ 1:84c2. Compare this energy value with the

energy for the corresponding positive state of the largest
WB in Fig. 2, 1:78c2, and the deviation amounts to only
3.37%. For nþ ¼ 1, the deviation between Eð1þÞ ¼ 2:41c2

and the corresponding numerical energy of 2:23c2 is
3.59%. For the negative level of n� ¼ 0, the deviation
between Eð0�Þ ¼ 1:02c2 and the corresponding numerical
energy of 1:08c2 is 5.56%.
To summarize, we have shown that the pair-creation

process in a supercritical electric field of finite extension
can be remarkably sensitive to very small magnetic fields,
if their direction is chosen perpendicular to the electric
field. This finite size phenomenon cannot be predicted by
Schwinger-like rate formulas in terms of traditional effec-
tive electric fields or Hund’s generalizations. The complete
shutoff is related to a reopening of the mass gap when
the magnetic field’s width exceeds the excursion distance
in the electric field direction. If the canonical momentum
py is small this excursion distance is on the order of the

cyclotron radius. This condition should be realized rather
easily experimentally once the required supercritical elec-
tric fields become available in the lab. While the numerical
values that we used in this Letter were used for computa-
tional convenience only and serve as a proof of principle,
the explicit analytical estimates are scalable to the parame-
ters for the expected experiments.
This Letter also raises several interesting questions. For

example, the onset of the shutoff is related to the corre-
sponding classical gyration radius, and one could there-
fore conjecture that some aspects of the suppression
mechanism is related to the fermionic Pauli blocking
[15], where the magnetically induced trapping permits
the electrons and positrons to return to the supercritical
interaction zone. If Pauli blocking were a key mechanism,
then a simulation based on the corresponding bosonic
system should result in an exponential enhancement [16]
of pair creation for these field configurations. Could this
found sensitivity because of finite size also be used to
enhance the electron-positron pair creation? Prior works
have shown that if the magnetic field direction is other
than perpendicular or even time dependent, the rates could
be enhanced.
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