Nematic spin correlations in the tetragonal state of uniaxially-strained BaFe$_{2-x}$Ni$_x$As$_2$

Xingye Lu,1 J. T. Park,2 Rui Zhang,1 Huiqian Luo,1 Andriy H. Nevidomskyy,8
Qimiao Si,3 Pengcheng Dai1,3,*

Understanding the microscopic origins of electronic phases in high-transition temperature (high-T$_c$) superconductors is important for elucidating the mechanism of superconductivity. In the paramagnetic tetragonal phase of BaFe$_{2-x}$T$_x$As$_2$ (where T is Co or Ni) iron pnictides, an in-plane resistivity anisotropy has been observed. Here, we use inelastic neutron scattering to show that low-energy spin excitations in these materials change from fourfold symmetric to twofold symmetric at temperatures corresponding to the onset of the in-plane resistivity anisotropy. Because resistivity and spin excitation anisotropies both vanish near optimal superconductivity, we conclude that they are likely intimately connected.

Superconductivity in iron pnictides can be induced by electron or hole-doping of their antiferromagnetic (AF) parent compounds (1–6). The parent compounds exhibit a tetragonal-to-orthorhombic structural phase transition at temperature T_N followed by a paramagnetic to AF phase transition at T_N ($T_N = T_S$) (4–6). An in-plane resistivity anisotropy has been observed in uniaxially strained iron pnictides BaFe$_{2-x}$T$_x$As$_2$ (where T is Co or Ni) above T_N (7–9). This anisotropy vanishes near optimal superconductivity and has been suggested as a signature of the spin nematic phase that breaks the in-plane fourfold rotational symmetry (C_4) of the underlying tetragonal lattice (10–14). However, such interpretation was put in doubt by recent scanning tunneling microscopy (STM) and transport (15) measurements, which suggest that the resistivity anisotropy in Co-doped BaFe$_{2-x}$As$_2$ arises from Co-impurity scattering and is not an intrinsic property of these materials. On the other hand, angle-resolved photoemission spectroscopy (ARPES) measurements found that the onset of a splitting in energy between two orthogonal bands with dominant d_{xy} and d_{xz} character in the uniaxial-strain-dwelled samples at a temperature above T_N (17, 18), thereby suggesting the involvement of the orbital channel in the nematic phase (19–22). Here, we use inelastic neutron scattering (INS) to show that low-energy spin excitations in BaFe$_{2-x}$Ni$_x$As$_2$ ($x = 0, 0.085$, and 0.12) (23, 24) change from fourfold symmetric to twofold symmetric in the uniaxial-strain tetragonal phase at temperatures corresponding to the onset of the in-plane resistivity anisotropy.

The magnetic order of the parent compounds of iron pnictide superconductors is collinear, with the ordered moment aligned antiferromagnetically along the a axis of the orthorhombic lattice (Fig. 1A), and occurs at a temperature just below $T_N = T_S = 138$ K for BaFe$_2$As$_2$ (3, 6). Because of the twinning effect in the orthorhombic state, AF Bragg peaks from the twinned domains appear at the $(\pm 1, 0)$ and $(0, \pm 1)$ in-plane positions in reciprocal space (Fig. 1B) (3). Therefore, one needs to prepare single domain samples by applying a uniaxial pressure (strain) along one axis of the orthorhombic lattice to probe the intrinsic electronic properties of the system (7–9).

Indeed, transport measurements on uniaxial-strain dwelled samples of electron-underdoped BaFe$_{2-x}$T$_x$As$_2$ (T_N) reveal clear in-plane resistivity anisotropy even above the zero pressure T_c, T_N, and T_R (Fig. 1C).

To search for a possible spin nematic phase (12–14), we carried out INS experiments in uniaxial-strain dwelled parent compound BaFe$_{2-x}$As$_2$ ($T_N = 138$ K), electron-underdoped superconducting BaFe$_{2-x}$Ni$_{0.085}$As$_2$ ($T_c = 16.5$ K, $T_N = 44$ K), and electron-overdoped superconducting BaFe$_{1.988}$Ni$_{0.12}$As$_2$ ($T_c = 18.6$ K, tetragonal structure with no static AF order) (Fig. 1C) (23, 24) using a thermal triple-axis spectrometer. Horizontally and vertically curved pyrolytic graphite (PG) crystals were used as a monochromator and analyzer. To eliminate contamination from epithermal or higher-order neutrons, a sapphire filter was added before the monochromator, and two PG filters were installed before the analyzer. All measurements were done with a fixed final wave vector $k_f = 2.602$ A$^{-1}$. Our annealed square-shaped single crystals of BaFe$_{2-x}$As$_2$ (~120 mg), BaFe$_{1.988}$Ni$_{0.12}$As$_2$ (~220 mg), and BaFe$_{2-x}$Ni$_{0.085}$As$_2$ (~448 mg) were mounted inside aluminum-based sample holders with a uniaxial pressure of $P = 15$ MPa, ~7 MPa, and ~7 MPa, respectively, applied along the $a_{\|}/b_\perp$ axes direction (fig. S1A) (25–27). We define momentum transfer Q in three-dimensional reciprocal space in \hat{A}^{-1} as $Q = 2\pi a' k + b' k + c' k$, where H, K, and L are Miller indices and $a' = a_{\|}/2\pi/a_0$, $b' = b_\perp/2\pi/b_0$, and $c' = c/2\pi/c_0$. In the AF ordered state of a 100% dwelled sample, the AF Bragg peaks should occur at $(\pm 1, 0, 0), (L = 1, 3, 5, \cdots)$ positions in reciprocal space. In addition, the low-energy spin waves should only stem from the $(\pm 1, 0)$ positions with no signal at the $(0, \pm 1)$ positions (26, 27). By contrast, in the paramagnetic tetragonal phase ($T > T_N \approx T_R$) one would expect the spin excitations at the $(\pm 1, 0)$ and $(0, \pm 1)$ positions to have equal intensities (12, 27).

The results of our INS experiments on uniaxial-strain dwelled BaFe$_{2-x}$Ni$_x$As$_2$ are summarized in Fig. 1C. The square red symbols indicate the temperature below which spin excitations at an energy transfer of $E = 6$ meV exhibit a difference in intensity between the $(\pm 1, 0)$ and $(0, \pm 1)$ positions for undoped and electron underdoped BaFe$_{2-x}$Ni$_x$As$_2$. For electron overdoped BaFe$_{1.988}$Ni$_{0.12}$As$_2$, the same uniaxial pressure has no effect on spin excitations at wave vectors $(\pm 1, 0)$ and $(0, \pm 1)$ (27). A comparison to the transport measurements (10) in Fig. 1C indicates that the resistivity anisotropy occurs near the spin excitation anisotropy temperature T' determined from INS.

*Corresponding author. E-mail: pdal@rice.edu

1Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China. 2Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, D-85748 Garching, Germany. 3Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA.
Given that our experiments are performed in uniaxial-strain detwinned samples, it is important to establish how the structural and magnetic transition temperatures are affected by the applied pressure. Figure S2A compares the temperature dependence of the magnetic order parameters at \((1, 0, 1)/\langle 0, 1, 1 \rangle\) for \(\text{BaFe}_{2}\text{As}_2\) in zero pressure (green symbols) and under uniaxial strain (red and blue symbols). We find that the \(\text{BaFe}_{2}\text{As}_2\) sample is essentially 100% detwinned under the applied uniaxial strain without altering \(T_N\) (27). Similarly, the electron underdoped \(\text{BaFe}_{2-x}\text{Ni}_{x}\text{As}_2\) is about 50% detwinned and has \(T_N \approx 44\,\text{K}\) unchanged from the zero-pressure case (fig. S2B) (27). To investigate whether the tetragonal-to-orthorhombic structural phase transition in \(\text{BaFe}_2\text{Ni}_2\text{As}_2\) is affected by the applied strain, we plot the temperature dependence of the (2, -2, 0) nuclear Bragg peak of \(\text{BaFe}_2\text{As}_2\) both zero pressure (fig. S2C) and detwinned samples (fig. S2D) exhibit a steplike feature at \(T_N \approx 138\,\text{K}\) resulting from the vanishing neutron extinction effect due to the tetragonal-to-orthorhombic structural transition (28, 29).

In previous spin-wave measurements on twinned \(\text{BaFe}_2\text{As}_2\), a spin gap of \(-10\,\text{meV}\) was found at the \((0, 1, 0)\) and \((0, 1, 1)\) positions (30). To probe spin excitations at the same wave vectors in the detwinned \(\text{BaFe}_2\text{As}_2\), we aligned the sample in the \([1, 0, 1]\times [0, 1, 1]\) scattering plane (27). Figures 2A, B, C, and D, show constant-energy scans centered at \((0, 1, 0)\) approximately along the \([1, K, 0]\) direction. Whereas spin waves at \((0, 1, 0)\) are clearly gapped at \(E = 6\,\text{meV}\) in the AF ordered state \((T = 3\,\text{K})\) in Fig. 2A, they are well defined at \(E = 15\,\text{meV}\) (Fig. 2C) and \(19\,\text{meV}\) (Fig. 2E), in line with the previous report (31). We find no evidence for spin waves at \(E = 6, 15, 19\,\text{meV}\) at \((0, 1, 1)\) (Fig. 2B, D, and F, respectively), which is consistent with a nearly 100% detwinned \(\text{BaFe}_2\text{As}_2\). On warming the system to the paramagnetic tetragonal state at \(T = 154\,\text{K}\), the spin gap disappears and the \(E = 6\,\text{meV}\) spin excitations at the AF wave vector \((1, 0, 1)\) are clearly stronger than those at \((0, 1, 1)\) (Fig. 2A and B) (27).

To quantitatively study the energy dependence of the spin excitation anisotropy in \(\text{BaFe}_2\text{As}_2\), we plot in Fig. 3A the energy scans at wave vectors \((1, 0, 1)\) and \((0, 1, 1)\) and their corresponding backgrounds at \(T = 154\,\text{K}\) (27). The background-subtracted scattering at \((1, 0, 1)\) is consistently higher than that at \((0, 1, 1)\) (Fig. 3C and E, left inset). When we warm up to \(T = 189\,\text{K}\), the corresponding energy scans (Fig. 3B) and the signals above background (Fig. 3D) reveal that the differences at these two wave vectors disappear (Fig. 3E, left inset). Figure 3E shows the temperature dependence of the spin excitations (signal above background scattering) across \(T_N\) and \(T_{\alpha}\). In the AF ordered state, we see only spin waves from the wave vector \((1, 0, 1)\). On warming to the paramagnetic tetragonal state above \(T_N\) and \(T_{\alpha}\), we see clear differences between the \((0, 1, 0)\) and \((0, 1, 1)\) that vanish above \(-160\,\text{K}\), the same temperature below which anisotropy is observed in the in-plane resistivity (Fig. 3E, right inset) (32). We conclude that the fourfold to twofold symmetry change in spin excitations in \(\text{BaFe}_2\text{As}_2\) occurs alongside the resistivity anisotropy.

To see if spin excitations in superconducting \(\text{BaFe}_{1.915}\text{Ni}_{0.085}\text{As}_2\) also exhibit the fourfold to twofold symmetry transition, we study the temperature dependence of the \(E = 6\,\text{meV}\) spin excitations at the \((1, 0, 1)\) and \((0, 1, 1)\) wave vectors. In previous INS experiments on twinned \(\text{BaFe}_{1.915}\text{Ni}_{0.085}\text{As}_2\), a neutron spin resonance was found near \(E \approx 6\,\text{meV}\) (33). Figures 4A, C, and D, show approximate transverse and radial scans through \((1, 0, 1)\) at various temperatures; one can clearly see the superconductivity-induced intensity enhancement from \(48\,\text{K}\) to \(8\,\text{K}\). The corresponding scans through \((0, 1, 1)\) (Fig. 4B and D) have weaker intensity than those at \((1, 0, 1)\). Figure 4E shows the temperature dependence of the magnetic scattering at \((1, 0, 1)\) and \((0, 1, 1)\). Consistent with constant-energy scans in Fig. 4A to D, the scattering at \((1, 0, 1)\) is considerably stronger than that at \((0, 1, 1)\) above \(T_N\). On warming through \(T_N\) and \(T_{\alpha}\) (24), the spin excitation anisotropy between \((0, 1, 0)\) and \((0, 1, 1)\) becomes smaller, but reveals no dramatic change. The anisotropy disappears around \(T' < 80\,\text{K}\), well above \(T_N\) and \(T_{\alpha}\) (Fig. 4E, F and G) but similar to the point of vanishing in-plane resistivity anisotropy (10).

Finally, we find that uniaxial strain does not break the \(C_4\) rotational symmetry of the spin excitations in electron-overdoped \(\text{BaFe}_{1.915}\text{Ni}_{0.085}\text{As}_2\) (fig. S5) (27). In this compound, resistivity shows no \(a_\parallel/b_\perp\) anisotropy (10).

Conceptually, once the \(C_4\) symmetry of the electronic ground state is broken, the electronic anisotropy will couple linearly to the orthorhombic lattice distortion \(\varepsilon = a_\parallel - b_\perp\), so that the \(C_4\) nematic transition should coincide with the tetragonal-to-orthorhombic transition at temperature \(T_{\alpha}(12-14)\). How do we then understand the region \(T_{\alpha} > T < T'\) in which the low-energy spin excitations develop an anisotropy? Theoretically, this is best understood in terms of the effective action for the electronic nematic order parameter \(\Delta\) and magnetization \(M_{1/2}\) of the interpenetrating Néel sublattices (14, 34, 35).

Here, \(S_0\) is defined as part of the action that does not contain nematic correlations \((M_1 \cdot M_1)\) (36), which have been decoupled in terms of the bosonic field \(\varepsilon(q, \omega)\) characterized by the nematic susceptibility \(\alpha(q, \omega)\), where energy \(E = \hbar\omega, \varepsilon\) is a linear coupling between the Ising-spin variable \(M_{1/2}\).
Fig. 4. Temperature dependence of spin excitations for BaFe1.915-Ni0.085As2. Background-subtracted Q scans at $E = 6$ meV around (A and C) (1, 0, 1) and (B and D) (0, 1, 1). The trajectory of the scans (red line) crossing spin excitations (red ellipses) are illustrated in the insets of (B) and (D). (E and F) Temperature dependence of the spin excitations at $E = 6$ meV for (1, 0, 1) and (0, 1, 1). The trajectory of the scans (blue line) crossing spin excitations (red ellipses) are illustrated in the insets of (B) and (D). The solid lines in (E) are guides to the eye. The left inset in (E) shows temperature dependence of the integrated intensity from 4 to 15 K; the right inset shows temperature dependence of the resistivity from (32).

RESEARCH | REPORTS
Finally, our measurements in the spin channel do not necessarily signal a thermodynamic order at the temperature T^*. Rather, T^* likely signals a crossover, whereas the true nematic transition occurs at T_n (9). This implies that a static order above T_n inferred from recent measurements of magnetic torque anisotropy in the isostructural BaFe$_2$As$_2$-F_x (35) is most likely not in the spin channel accessible to the inelastic neutron scattering. A static order in other channels — such as, for instance, an octupole order — would, however, not contradict our observations.

REFERENCES AND NOTES

Selective Attention

Long-range and local circuits for top-down modulation of visual cortex processing

Siyu Zhang,1 Min Xu,1 Tsukasa Kamigaki,1 Johnny Phong Hoang Do,1 Wei-Cheng Chang,1 Sean Jenvey,1 Kazunari Miyamichi,2 Liqun Luo,2 Yang Dun1

Finally, our measurements in the spin channel do not necessarily signal a thermodynamic order at the temperature T^*. Rather, T^* likely signals a crossover, whereas the true nematic transition occurs at T_n (9). This implies that a static order above T_n inferred from recent measurements of magnetic torque anisotropy in the isostructural BaFe$_2$As$_2$-F_x (35) is most likely not in the spin channel accessible to the inelastic neutron scattering. A static order in other channels — such as, for instance, an octupole order — would, however, not contradict our observations.

REFERENCES AND NOTES

Siyu Zhang,1 Min Xu,1 Tsukasa Kamigaki,1 Johnny Phong Hoang Do,1 Wei-Cheng Chang,1 Sean Jenvey,1 Kazunari Miyamichi,2 Liqun Luo,2 Yang Dun1

Top-down modulation of sensory processing allows the animal to select inputs most relevant to current tasks. We found that the cingulate (Cg) region of the mouse frontal cortex powerfully influences sensory processing in the primary visual cortex through long-range projections that activate local γ-aminobutyric acid–ergic (GABAergic) circuits. Optogenetic activation of Cg neurons enhanced V1 neuron responses and improved visual discrimination. Focal activation of Cg axons in V1 caused a response increase at the activation site but a decrease at nearby locations (center-surround modulation). Whereas somatotopic-positive GABAergic interneurons contributed preferentially to local suppression, vasoactive intestinal peptide–positive interneurons were crucial for center facilitation. Long-range cortico-cortical projections thus act through local microcircuits to exert spatially specific top-down modulation of sensory processing.
Materials and Methods

Sample preparation

BaFe$_{2-x}$Ni$_x$As$_2$ single crystals were grown with self-flux method. The basic sample characterizations were described in our previous study [39]. Large single crystals with less flux were selected and annealed in Ba$_2$As$_3$ for several days. The tetragonal [1,1,0] direction of annealed crystals was determined by X-ray Laue diffraction. The crystals were cut into rectangular pieces along the [1,1,0] and [1,-1,0] directions by high precision wire saw.

Samples used in this report are BaFe$_2$As$_2$ ($T_N = T_s = 138$ K), electron-underdoped superconducting BaFe$_{1.915}$Ni$_{0.085}$As$_2$ ($T_c = 16.5$K, $T_N = 44$ K, $T_s = 52$ K) and electron-overdoped BaFe$_{1.88}$Ni$_{0.12}$As$_2$ ($T_c = 18.6$ K).

Device for sample detwinning

The device for sample detwinning was made of 6061 aluminum alloy with low neutron incoherent scattering cross section. As shown in Fig. S1A, uniaxial pressure can be applied by a spring along orthorhombic [0,1,0] direction by tuning the screw in one end. The pressure can be calculated by the known elasticity coefficient ($k = 10.5$ N/mm) and the compression of the spring (Δx). The elasticity coefficient was measured in our lab, as shown in Fig. S1B. Take BaFe$_{1.915}$Ni$_{0.085}$As$_2$ as an example, the sample size is 7.97mm*6.42mm*0.70mm. Thus the sectional area we applied pressure were 7.97*0.7=5.58 mm2. The compression of the spring in the experiment was about 3.5 mm. A simple calculation gives a pressure ~6.6 MPa. However, since the pressure calibrations were done at room temperature and we do not know the elasticity coefficient of the spring at low temperatures, the applied pressure was only a rough estimate. What we do know is that the applied pressure is sufficient to detwin the sample. In Fig. S1A, the device is mounted on a supporting sample holder to align the crystal in the [1,0, 1]×[0,1,1] scattering plane (see Fig. S1C), where the spin excitations at $Q_{AF} = (1,0,1)$ and (0,1,1) can be measured and compared directly.
Sample detwinning

Our neutron scattering experiments were carried out using the PUMA thermal triple-axis spectrometer at the MLZ in Garching, Germany. The efficiency of sample detwinning can be checked by comparing the intensity of the magnetic Bragg peaks at (1,0,1) and (0,1,1). For a fully detwinned sample, magnetic elastic scattering is expected to appear only at the antiferromagnetic wave vector (1,0,L=1, 3, ⋯). Figure S1D shows the measurements of magnetic order at the (1,0,1) and (0,1,1) positions. A magnetic Bragg peak was observed at the (1,0,1) position while no magnetic signal was detected at (0,1,1), indicating that the BaFe$_2$As$_2$ single crystal was completely detwinned. Above the antiferromagnetic transition temperature (T$_N$), the magnetic peak at (1,0,1) disappears as expected. The temperature dependence of the magnetic Bragg peak at (1,0,1) and (0,1,1) was also measured for BaFe$_2$As$_2$ and BaFe$_{1.915}$Ni$_{0.085}$As$_2$ (Figs. S2, A, B). Consistent with magnetic Bragg peak measurements in Fig. S1D, the BaFe$_2$As$_2$ was fully detwinned with most of the magnetic intensity located at (1,0,1). For the BaFe$_{1.915}$Ni$_{0.085}$As$_2$, the sample was partially detwinned with the intensity at (1,0,1) about three times larger than that at (0,1,1). In both cases, the applied pressure did not change T$_N$. We have also measured the effect of uniaxial pressure on structural transition of BaFe$_2$As$_2$. As shown in Figs. S2, C and D, the temperature dependence of the intensity at the (2,-2,0) nuclear Bragg reflection for the twinned and detwinned samples both shows a dramatic jump at T_s = 138 K arises from the neutron extinction release that occurs due to strain and domain formation related to the orthorhombic distortion, indicating that the uniaxial pressure does not change the tetragonal to orthorhombic lattice transition temperature [28,29]. In previous work [29], the measurable extinction release at temperatures well above T_s was suggested as arising from the significant structural fluctuations related to the orthorhombic distortion. If we assume this interpretation is correct, our data for the detwinned sample would suggest that uniaxial pressure pushes structural fluctuations to a temperature similar to resistivity anisotropy. Since extinction effect is typically only found for strong nuclear Bragg peaks, we do not expect to observe similar effect in weak magnetic Bragg scattering in Fig. S2A.
We also note that the (1,0,1) magnetic Bragg peak intensity in the twinned sample (Fig. S2A, green symbols) is not 1/2 of the detwinned sample. Since we must take the sample outside the cryostat to release the uniaxial pressure, the remounted sample will likely be at a slightly different location inside the neutron beam. Thus, for sharp magnetic or nuclear Bragg peaks, the measured intensity for strained and unstrained samples can only be compared approximately. However, this does not affect our experimental conclusion since the comparison of the scattering intensities at two wave vectors $Q_{AF}=(1,0,1)$ and $(0,1,1)$ and their temperature dependence was done under the identical setup for each pressed or ambient-pressure case.

As the BaFe$_2$As$_2$ crystal was detwinned by uniaxial pressure, the low-energy spin waves were also fully “detwinned”. In a twinned sample, the spin waves show four-fold symmetry owing to the existence of twin domains as seen from our neutron time-of-flight measurements for BaFe$_2$As$_2$ (Fig. S3A) [31]. On warming to above $T_s=T_N$, spin excitations still obey the four-fold rotational symmetry (Fig. S3C). For a uniaxial strained BaFe$_2$As$_2$, on the other hand, the spin waves stem only from the antiferromagnetic wave vector $Q_{AF}=(1,0,L)$, as shown in Fig. S3B. In the tetragonal state ($T > T_s = T_N$), the magnetic order disappears and the paramagnetic spin excitations of the unconstrained sample show four-fold symmetry (Fig. S3C).

Background subtraction

As in typical magnetic neutron scattering experiments, the backgrounds of constant-energy scans are temperature dependent. Raw inelastic neutron scattering data for typical constant-energy scans are shown in Fig. S4A. The solid curves in Fig. S4A are single Gaussian fits assuming a linear background. Apparently, most of the scans in our measurements are well described by a Gaussian with a linear background. Figure S4B shows the linear-background subtracted data from raw data in Fig. S4A.

Results of BaFe$_{1.88}$Ni$_{0.12}$As$_2$
Different from the parent compound (x = 0) and under-doped (x=0.085) sample, the uniaxial pressure has no effect on the C_4 rotational symmetry of the spin excitations for slightly electron over-doped BaFe$_{1.88}$Ni$_{0.12}$As$_2$ sample [40]. Figures S5, A and B show constant-energy scans at $E = 6$ meV below and above T_c, respectively, under the same uniaxial strain as that of the superconducting BaFe$_{1.915}$Ni$_{0.085}$As$_2$. We find that spin excitations have identical intensity at the (1,0,1) and (0,1,1) wave vectors, thus preserving the C_4 rotational symmetry of the underlying lattice. Figures S5, C and D show constant-momentum scans across T_c at (1,0,1) and (0,1,1), respectively. The temperature difference plot confirms the neutron spin resonance with identical intensity and energy ($E = 7$ meV) for (1,0,1) and (0, 1, 1) wave vectors [40]. Figure S5F plots the temperature dependence of the scattering intensity at $E = 7$ meV which proves that the applied uniaxial strain does not break the C_4 rotational symmetry of the spin excitations in the electron overdoped compound.
Figure S1: (A) Detwinning device mounted on the supporting sample holder. The crystal was aligned in the [1,0,1]×[0,1,1] scattering plane. Uniaxial pressure can be applied by a steel spring driven by a screw. (B) Measurement of elasticity coefficient of the spring. (C) The light blue shaded zone is the scattering plane where \(Q_{AF} = (1,0,1) \) and \((0,1,1) \) can be measured and compared directly. The \((1,0,1) \) and \((0,1,1) \) positions are marked by orange dots. (D) Magnetic Bragg peaks at the \((1,0,1) \) and \((0,1,1) \) positions in the detwinned BaFe\(_2\)As\(_2\) below and above \(T_N \).
Figure S2: (A) Magnetic Bragg peak intensity at the (1,0,1) and (0,1,1) positions for the BaFe$_2$As$_2$ at zero pressure (green) and $P \sim 15$ MPa uniaxial pressure along the b_0 axis. (B) Similar Bragg peaks for BaFe$_{1.915}$Ni$_{0.085}$As$_2$. (C) Temperature dependence of the (2,-2,0) nuclear Bragg peak at zero pressure. The sharp step at T_S is caused by releasing of the neutron extinction due to tetragonal to orthorhombic lattice distortion. (D) The identical scan under $P \sim 15$ MPa uniaxial pressure.
Figure S3: Comparison of the low energy spin waves for the twinned and nearly 100% detwinned BaFe$_2$As$_2$. (A) Constant energy slice of the low-energy spin waves for the twinned BaFe$_2$As$_2$. Data were collected on MAPS time-of-flight spectrometer with $E_i = 80$ meV at $T = 7$ K [31]. The spin waves show four-fold symmetry due to twinning. (B) Identical slice of the detwinned BaFe$_2$As$_2$ collected on MERLIN time-of-flight spectrometer with $E_i = 80$ meV at $T = 5$ K (unpublished data). Detwinning transfers the magnetic intensity from (0,1,1) to (1,0,1). (C) At temperature $T = 150$ K $> T_N$, the paramagnetic spin excitations of the twinned sample show four-fold symmetry, consistent with the four-fold symmetry of the underlying tetragonal lattice.
Figure S4: Background subtraction of inelastic neutron scattering data. (A) The raw data of the transverse scan across the (1,0,1) position. The scan trajectory is shown in the inset of (B). The solid curves are Gaussian fits of the data on linear backgrounds. (B) The linear-background subtracted data.
Figure S5: Temperature dependence of spin excitations at (1,0,1) and (0,1,1) for BaFe$_{1.88}$Ni$_{0.12}$As$_2$ [40]. (A) Linear background subtracted Q-scans around (1,0,1) and (0,1,1) at $E = 6$ meV and 3.5 K. (B) Identical scans at 20 K. The inset shows the trajectory of the scans. Constant Q-scans at (C) (1,0,1) and (D) (0,1,1) below and above T_c. (E) Temperature difference plot showing neutron spin resonance at (1,0,1) and (0,1,1). (F) Temperature dependence of the scattering at the resonance energy at (1,0,1) and (0,1,1).
References

1. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor \(\text{La}[\text{O}_{1-x}\text{F}_x]\text{FeAs} \) \((x = 0.05-0.12)\) with \(T_c = 26 \text{ K.} \) *J. Am. Chem. Soc.* **130**, 3296–3297 (2008). Medline doi:10.1021/ja800073m

27. Materials and methods are available as supplementary materials on Science Online.

36. The Ginzburg–Landau action up to the 4th power of $\mathbf{M}_{1/2}$: $S_0[\mathbf{M}_1^2, \mathbf{M}_2^2] = \iint d\mathbf{q} d\omega (r_0 + \mathbf{q}^2 + \gamma |\omega|)(\mathbf{M}_1^2 + \mathbf{M}_2^2) + u(\mathbf{M}_1^2 + \mathbf{M}_2^2)^2$ where $r_0 \propto T - T_N$ describes distance from the Néel point.

