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Two-dimensional lattices provide the arena for many physics problems of essential importance, a scale
symmetry, which rarely exists as noticed by Galileo, in such lattices can help reveal the underlying physics.
Here we report the discovery and proof of directional scaling symmetry for high symmetry 2D lattices, i.e.,
the square lattice, the equilateral triangular lattice and thus the honeycomb lattice, with aid of the function
y 5 arcsin(sin(2pxn)), where the parameter x is either the platinum number m~2{

ffiffiffi
3
p

or the silver number
l~

ffiffiffi
2
p

{1, which are related to the 12-fold and 8-fold quasiperiodic structures, respectively. The directions
and scale factors for the symmetric scaling transformation are determined. The revealed scale symmetry
may have a bearing on various physical problems modeled on 2D lattices, and the function adopted here can
be used to generate quasiperiodic lattices with enumeration of lattice points. Our result is expected to
initiate the search of directional scaling symmetry in more complicated geometries.

T
he square lattice and the equilateral triangular lattice, thus also the honeycomb lattice, are high-symmetry
two-dimensional (2D) lattices. They play important roles in mathematics, physics, architectonics, arts and
many other fields. For 2D lattices, the uniform scaling of the space, i.e., simultaneous dilation or contraction

at two orthogonal directions with the same scale factors, will evidently preserve the character, or symmetry, of
their patterns. A natural and perhaps also meaningful question may be raised: Is there any directional scaling
symmetry for the high-symmetry 2D lattices that preserves the character of these lattices? Or in other words, is
there any scaling transformation along a particular direction that brings a square (equilateral triangular) lattice
into a square (equilateral triangular) lattice?

For the equilateral triangular lattice, if directional scaling is performed along any side of the unit triangle, i.e.,
along the ,10.-directions, in the crystallographic nomenclature, then the contraction at any rate will never
result in a triangular lattice. However, stretching along that direction with a scale factor c 5 3 results in a perfect
equilateral triangular lattice, and the side length of the unit triangle in the resulting lattice is

ffiffiffi
3
p

times larger
(Fig. 1). A particular feature should be noticed that the neighborhood relation of the lattice points has been
changed by this transformation. For example, in Fig. 1a the lattice points (0, 1, 2, 3) form two unit triangles, D013
and D023, but in the resulting lattice in Fig. 1b the two unit triangles formed by the corresponding lattice points
are D012 and D123. The scale factor c 5 3 is the sole possibility of directional scaling symmetry for stretching
along the side of the unit triangle in the case of equilateral triangular lattice. For scaling along the bisector line of a
unit triangle, the solely possible directional scaling symmetry is the contraction with a scale factor c 5 1/3, which
is in fact the inversed transformation of the one described above. This provides a trivial example of directional
scaling symmetry. In the case of square lattice, directions along the side or the diagonal of the unit square don’t
exhibit any scaling symmetry.

The lack of scaling symmetry along the most notable ,10.-directions in the square and equilateral triangular
lattices does not compulsively exclude the possibility of directional scaling symmetry along other directions.
Rather, we may even wish that such a directional scaling symmetry, if there is any, can be achievable in principle
with more scale factors. We see that if such a directional scaling symmetry can be proven to exist, and the
corresponding transformation can be formulated, this will evidently promote our understanding of the structural
properties of lattices, and provide helpful insight into problems involving lattices such as in statistical physics,
condensed matter physics, quantum theory, and even number theory, etc.

In the effort of investigating the 1D incommensurate systems such as specified by the function cos(2pqn)1–4,
where n is integer and the parameter q is an irrational number such as the golden ratio, and 2D quasiperiodic
structures5–8, we came across to the question whether there is any directional scaling symmetry for the square
lattice and the equilateral triangular lattice (hence also the honeycomb lattice). We found that the square lattice
exhibits directional scaling symmetry along a direction at 22.5u with respect to the side of a unit square, with the
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drag center of scaling transformation falling on the lattice point, and
the scale factor is (3{2

ffiffiffi
2
p

)k, k 5 1,2,3…. In the case of equilateral
triangular lattice, the directional scaling symmetry appears at the
direction at 15u with respect to any side of the unit triangle, with
the drag center of scaling transformation falling on the lattice point,
and the scaling factor is (7{4

ffiffiffi
3
p

)k, k 5 1, 2, 3…. A proof based on
the function y 5 arcsin(sin(2pxn)), where the parameter x is the
silver number9–11 or the platinum number11–13, which are respectively
related to the 8-fold and 12-fold quasiperiodic structures, is
presented.

Results
Directional scaling symmetry in equilateral triangular lattice. The
plot of the function y 5 sinn, where the argument n is non-negative
integer (the discussion below is also valid for negative integer, but it is
not of concern here), is essentially different from that for y 5 sinx,
where x is real. This fact has been noticed and extensively studied by
Strang14,15 and Richert16. In studying the 1D incommensurate
structures, we found that the function y 5 sin(2pmn), where
m~2{

ffiffiffi
3
p

is the platinum number which is related to the
dodecagonal quasiperiodic structure8,11–13, reveals an interesting
picture as illustrated in Fig. 2a. In the boundary regions defined by
y 5 61, the graph seems folding together, reminding us of Escher’s
paintings based on the concept of Poincaré disc. In the central region,
however, the graph seems to display locally 12-fold rotational
symmetry. This is quite reasonable since m~2{

ffiffiffi
3
p

is the platinum
number. If instead of y 5 sin(2pmn) we draw the function y 5

arcsin(sin(2pmn)), we see that the whole domain bounded by y 5

6p/2 is globally isometric, and the plot displays locally 12-fold
rotational symmetry (in a not very strict sense), see Fig. 2b.

Interestingly, the plot of the function y 5 arcsin(sin(2pmn)) in
Fig. 2b can be taken as a Moiré pattern17,18, i.e., as superposition of
two identical simpler lattices (see Fig. S1). In fact, the function y 5

arcsin(sin(2pmn))itself can be divided into two branches

arcsin(sin(2pmn))~

2p(nm{m), m{
1
4

� �
ƒnmƒ mz

1
4

� �
;

{2p(nm{m{
1
2
), mz

1
4

� �
vnmv mz

3
4

� �
:

8>>><
>>>:

, ð1Þ

where both m, n are non-negative integer, and if nm 2 [nm] g [0,
3/4], m 5 [nm]; if nm 2 [nm] 2 1 g [21/4, 0], then m 5 [nm] 1 1.
Here [x] denotes the truncation of the positive real number x. In the
following the first branch in eq.(1) is referred to as the ascending

branch, as points generated by this branch fall on the ascending part
of the graph for y 5 arcsin(sinx)) (see Fig. S2), and the second branch
is accordingly referred to as the descending branch. The plot of only
the ascending branch results in Fig. 3a (for comparison of the two
branches, see Fig. S1). From Fig. 3a we can readily find that the plot of
the ascending branch constitutes an oblique 2D lattice. So does the
plot of the descending branch. In fact, with a proper ratio of the
longitudinal scale to the transverse scale the unit triangle in Fig. 3a
can be made to have roughly three equal sides, thus the lattice is
approximately an equilateral triangular lattice (to be further dis-
cussed below).

If we compress Fig. 3a along the horizontal axis in a continuous
way, the approximate equilateral triangle lattice will at first be dis-
torted, and then, when the scale factor comes to a proper value
(,7{4

ffiffiffi
3
p

), the shape of the lattice will again recover, as illustrated
in Fig. 3b. This scenario can be repeated infinitely. More importantly,
after each contraction, the unit triangle in the lattice can be brought
closer to a rigorously equilateral triangle, in the sense that the side
lengths suffer from a less relative deviation. And it can be proven that
in the extreme case when the ratio of longitudinal scale to transverse
scale approaches vanishingly small, the unit triangle turns into a
rigorously equilateral triangle (see detailed proof in supplementary
information). Notice that the transformation changes the neighbor-
hood relation that, for instance, in Fig. 3a the two unit triangles
anchored to the point n 5 0 are D0-4-15 and D0-11-15, whereas
after the transformation, the two unit triangles anchored to the point
n 5 0 are D0-15-56, and D0-41-56 (Fig. 3b).

Thus this manipulation leads us to the discovery that there exists
directional scaling symmetry for the equilateral triangular lattice,
which is a scaling transformation, setting the drag point on an arbit-
rary lattice point, along the direction at 15u with respect to the side of
the unit triangle, and the scale factor is 7{4

ffiffiffi
3
p

. The ratio of side
lengths involved in this transformation is 2{

ffiffiffi
3
p

. Such a scaling
transformation can be performed repeatedly. This directional scaling
symmetry for equilateral triangular lattice specified above can be
easily checked (see detailed proof in supplementary information).

By the way, the equilateral triangular lattice is the superposition of
a honeycomb lattice and a

ffiffiffi
3
p

times larger equilateral triangular
lattice. Taking the lattice in Fig. 3a as an equilateral triangular lattice,
the index in the plot helps to specify the points to be removed so as to
obtain a honeycomb lattice from the parent triangular lattice (The
rules of doing this are clarified in the supplementary information).
Obviously, the honeycomb lattice has also directional scaling sym-
metry, and the scale factor and the ratio of side lengths for hexagons
before and after the transformation are 7{4

ffiffiffi
3
p

and 2{
ffiffiffi
3
p

, respect-
ively. The drag point is set on the center of an arbitrary unit hexagon,
and the direction is at 15u with respect to the side of the hexagon.
More interestingly, when a honeycomb lattice is obtained after scal-
ing along that particular direction, the center of the unit hexagon
remains the center of the unit hexagon in the resulting lattice. The
honeycomb lattice and the equilateral triangular lattice share the
same directional scaling symmetry may arise from the fact that hon-
eycomb lattice is dual (reciprocal) to the equilateral triangular lattice.

Directional scaling symmetry in square lattice. With the silver
number l~

ffiffiffi
2
p

{1, which is related to the octagonal quasiperio-
dical structure7,9–11, we obtain an interesting plot of the function
y 5 sin(2pln) (Fig. 4a) in analog to Fig. 2a. Going one step
further, we draw the plot of the function y 5 arcsin(sin(2pln)),
which is globally isometric, and displays locally 8-fold rotational
symmetry (in a not very strict sense), see Fig. 4b.

Again, the plot in Fig. 4b can be taken as a Moiré pattern formed by
the superposition of two identical simpler lattices (see Fig. S3).
Accordingly, the function y 5 arcsin(sin(2pln)) can be separated
into two branches

Figure 1 | A trivial example of directional scaling symmetry for
equilateral triangular lattice, which is achieved along any side of a unit
triangle with a scale factor c 5 3. (a) The original lattice; (b) the

transformation result of (a) along the connection line between points 0 and

3.
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arcsin(sin(2pln))~

2p(nl{m), m{
1
4

� �
ƒnlƒ mz

1
4

� �
;

{2p(nl{m{
1
2
), mz

1
4

� �
vnlv mz

3
4

� �
:

8>>><
>>>:

ð2Þ

Where m, n are non-negative integers, and if nl 2 [nl] g [0, 3/4],
then m 5 [nl]; if nl 2 [nl] 2 1 g [21/4, 0], then m 5 [nl] 1 1. As
above, the first branch is referred to as the ascending branch of the
function, and the second branch is referred as the descending branch.
Thus the plot of y 5 arcsin(sin(2pln)) can be taken as the Moiré

Figure 2 | Plots of the sinusoidal function y 5 sin(2pmn) (a) and the arcsine function y 5 arcsin(sin(2pmn)) (b), where m~2{
ffiffiffi
3
p

, and the argument n
is non-negative integer.

Figure 3 | (a) Plot of the ascending branch of the function y 5 arcsin(sin(2pmn)), where m~2{
ffiffiffi
3
p

, and n is non-negative integer; (b) The result of

scaling along the horizontal axis with a scale factor of ,7{4
ffiffiffi
3
p

. Points are indexed with the corresponding argument n.
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pattern formed by the overlapping plots for its ascending branch and
descending branch (Fig. S3).

The ascending branch of the function y 5 arcsin(sin(2pln))is
plotted in Fig. 5a (For comparison of the two branches, see Fig.
S3). One can easily check that the points in Fig. 5a form a square
lattice, in an approximate sense, when a proper ratio of longitudinal
scale to transverse scale is chosen (see detailed proof in supplement-
ary information).

If Fig. 5a is compressed along the horizontal axis, the shape of the
approximate square unit will at first be distorted, then, when the scale
factor comes to a value ,3{2

ffiffiffi
2
p

, the shape of the lattice will be
recovered, as illustrated in Fig. 5b. This operation can be performed
repeatedly. After each contraction, the approximate unit square gets
closer to a rigorous square (see detailed proof in supplementary
information). It can be proven that the approximate unit square turns
into a rigorous square when the ratio of longitudinal scale to trans-
verse scale becomes vanishing small (see detailed proof in supplement-
ary information). Notice that the neighborhood relation of points in
the lattice has been changed by contraction. For example, the unit
square, anchored to the original point 0, is (%0-5-12-17) in Fig. 5a,
but after the contraction it is the square %0-12-29-41, see Fig. 5b.
Moreover, the unit square is also rotated by 45u by the transformation.

Thus this manipulation leads us to the discovery that directional
scaling symmetry exists for the square lattice, which is along the
direction at 22.5u with respect to any side of a unit square, and the
scaling factor is 3{2

ffiffiffi
2
p

. The ratio of the side lengths of the unit
squares before and after transformation is

ffiffiffi
2
p

{1 (see detailed proof
in supplementary information).

Thus by using the arcsine functions y 5 arcsin(sin(2pxn)), where
the parameter x is either the platinum number m~2{

ffiffiffi
3
p

or the
silver number l~

ffiffiffi
2
p

{1, we found and proved the existence of
directional scaling symmetry for the equilateral triangular lattice
(thus also the honeycomb lattice), and the square lattice. With the
drag center set on a lattice point, in the case of equilateral triangular
lattice, the direction of scaling symmetry is at 15u with regard to the
side of the unit triangle, and the scale factor is 7{4

ffiffiffi
3
p

, while in the
case of square lattice, the direction of scaling symmetry is at 22.5u
with regard to the side of the unit square triangle, and the scale factor
is 3{2

ffiffiffi
2
p

. In both cases the directional scaling transformation can
be performed repeatedly.

Discussion
With the existence proof of directional scaling symmetry for the
square lattice and equilateral triangular lattice, an immediate ques-
tion will be raised: Are there more possibilities of scaling symmetry
for these high-symmetry 2D lattices? Also it reminds us of the pos-
sible existence of directional scaling symmetry for 3D cubic and
rhombic lattices. To both questions we will bet on a positive answer.

The method of proof involves applying trigonometric functions
with the silver ratio and the platinum ratio in argument, and
approaching a property of the rigorously symmetrical lattices from
approximate ones, is new and inspiring. To the least, such a function
can be used to generate quasiperiodic lattices with enumerable lattice
points, which is very helpful for the calculation of the diffraction
pattern and energy bands for quasicrystals. It is of particular import-
ance when the enumeration of the eigenfunctions for the

Figure 4 | Plots of the sinusoidal function y 5 sin(2pln) (a) and the arcsine function y 5 arcsin(sin(2pln)) (b), where l~
ffiffiffi
2
p

{1, and the argument n is
non-negative integer.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 6193 | DOI: 10.1038/srep06193 4



Hamiltonian operator is of concern as in the study of topological
insulator, and the current work may help the search of topological
insulators in quasicrystals19.

With the current work we want to call attention to the directional
scaling symmetry for the equilateral triangular lattice and square
lattice, and the related silver ratio and platinum ratio, which are
expected to have some impact on the various physics problems,
particularly in statistical physics, condensed matter physics,
quantum field theory, etc., modeled on high-symmetry 2D lattices.
The scaling symmetry of a lattice will be incorporated into the
Hamiltonian for a quantum model defined on it, which in turn will
determine the feature of ground energy degeneracy-a pivotal concept
for the discussion of quantum critical phenomenon. Remarkably, the
golden ratio Q~(

ffiffiffi
5
p

z1)=2, the peer of the silver ratio and the plat-
inum ratio here concerned, has been found lying beneath many
fundamental physical problems, and usually in unexpected places.
For instance, the lowest two masses of the bound states, m1 and m2, in
the 1D Ising model realized in CoNb2O6 crystal, have the ratio m1/m2

5 Q, as predicted by E8 Lie group20. The critical fugacity for the hard-
hexagon model is found to be zc 5 Q5 21, while the maximum of
Hardy’s probability, a quantity referring to the Hardy’s test of
Bell’s inequality, for quantum system of arbitrary finite dimension
is pHardy 5 1/Q5 22. Such observations have not yet been well under-
stood. It is anticipated by analogy that the silver ratio and the plat-
inum ratio may also be found relevant in the physical problems
defined on such lattices, e.g., J1-J2 XY model, triangular Ising anti-
ferromagnet, etc. As in the case of the golden ratio, the discovery may
demand years of meticulous research, and will be made only in a
serendipitous fashion.
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p

{1, and n is non-negative integer; (b) The result of

scaling along the horizontal axis with scale factor ,3{2
ffiffiffi
2
p

. Points are indexed with the corresponding argument n.
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I. Figures S1-S3 

 

Fig.S1. Plot of the two branches of the function ( )( )arcsin sin 2y nπμ= , 2 3μ = − , both 

illustrating an approximate equilateral triangular lattice. (a) The ascending branch; (b) 

the descending branch. Index of points in the figure is the corresponding value of the 

argument n.  

 

Fig.S2. Plot of the function y arcsin(sin(x))= , where x is real, divided into the 

ascending branch (solid line) and the descending branch (dashed line). Joint points of 

a line with the individual branch, ascending or descending, are separated at equal 

distance.  
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Fig.S3. Plot of the two branches of the function arcsin(sin(2 ))y nπλ= , 12 −=λ , both 

illustrating an approximate square lattice. (a) The ascending branch; (b) the 

descending branch. Index of points in the figure is the corresponding value of the 

argument n. 

 

II. Platinum number, dodecanacci sequence, and proof of directional scaling 

symmetry for equilateral triangular lattice 

For the proof of directional scaling symmetry for equilateral triangular lattice, 

some preparatory work has to be done on the basis of platinum number and 

dodecanacci sequence. 

The quadratic equation 2 4 1 0x x− + = has two real roots, one is the platinum 

number1,2 2 3ρ = + , the other is its reciprocal ( )2 3 tan( 12)μ π= − = . Both roots 

are characteristic numbers for the dodecagonal quasiperiodic structure3. Table 1 lists 

the k-th power of μ , which will be used in the proof.  

Table 1. The k-th power of ( )2 3μ = −    

 
 
 
 
 
 
 

 
 

 

 

 

 

 

 

 μ k 
0 μ 0 =       1 −     0 3   =     1  

1 μ 1 =       2 −     1 3   =     1 μ  −   0 

2 μ  2 =       7 −     4 3   =     4 μ  −   1 

3 μ 3 =     26 −   15 3   =   15 μ  −   4 

4 μ 4 =     97 −   56 3   =   56 μ  −   15 

5 μ 5 =   362 − 209 3   = 209 μ −   56 

6 μ 6 = 1351 − 780 3   = 780 μ  − 209 

… ...... 

k 13 −−=−= kkkk
k DDDI μμ   
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From the μ -representation of the powers of μ , we obtain two number sequences: 

one is 0, 1, 4, 15, 56, 209, 780,…; the other is 1, 2, 7, 26, 97, 362, 1351,…. These two 

sequences are dubbed the dodecanacci sequenceby some researchers3. 

In order to facilitate the discussion below, we denote the first sequence as D, the 

second sequence as I, and the k-th items of these two sequences as Dk and Ik, 

respectively. The two dodecanacci sequences D and I have the following simple 

iterative relations 

1 1 0 14 , 0, 1;k k kD D D D D+ −= − = =       (1) 

1 1 0 14 , 1, 2;k k kI I I I I+ −= − = =        (2) 

This is to say that they are generated from the same iteration process with different 

initial items. For both sequences D and I, the ratio of an item over the preceding one 

approaches the platinum number 2 3ρ = +  as k → ∞ . 

From the expression in table 1, 

1
k

k kD Dμ μ −= −                        (3) 

it follows that 1 0k kD Dμ −− > , and it vanishes as k → ∞ . The number sequence D 

also satisfies the following equality 

2 2
1 14 1k k k kD D D D+ +− + =                  (4) 

 

The number 2 3μ= - , which is irrational, can be expressed as a periodic, 

infinitely continued fraction(4), i.e., 2 3μ= -  = [0, 3, 1, 2, 1, 2, 1, 2, 1, 2, ...]. If the 

continued fraction is cut off at the l-th order, then we can get a rational approximation 

lll BA /~ =μ  to this irrational number4-6. For the case of 2l k= , 0k ≥ , the 2k-th order 

approximation can be expressed as  

1
2

~
+

≈
k

k
k D

Dμ .                  (5) 

Obviously, as k increases, the rational approximation approaches 2 3μ= - . Similarly, 
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for 2 1= +l k , 0k ≥ , the (2k+1)-th order rational approximation can be expressed as 

22

11
12

~
++

++
+ −

−
≈

kk

kk
k DI

DIμ . 

 

Now we turn to the existence proof of directional scaling symmetry for the 

equilateral triangular lattice along the following route:  

1)  Showing that the points generated by a branch of the function 

( )( )arcsin sin 2y nπμ=  form an oblique lattice;  

2)  Showing that in the plot of the ascending branch, the unit triangle D0DkDk+1, 

which is possible at a proper ratio of the longitudinal scale to the transverse scale, 

deviates less and less from a rigorous equilateral triangle with increasing k. Thus 

at k → ∞ , the lattice turns into an equilateral triangular lattice, and the scaling process 

along the horizontal axis in the extreme reveals the directional scaling symmetry for 

the equilateral triangular lattice; 

3)  Working out the parameters of directional scaling symmetry. 

 

Unless in the cases that y assumes a value of / 2π , the points generated by the 

ascending (descending) branch (defined in eq.(1) in the article) of the function 

( )( )arcsin sin 2y nπμ= , 2 3μ = − , fall on the ascending (descending) branch of the 

function y=arcsin(sin )x , and those points on a line are separated at equal distance. 

Based on these facts, the points generated by a given branch of the function 

( )( )arcsin sin 2y nπμ= form an oblique lattice (Fig.S1). This can be confirmed by 

calculating the distances and orientations of neighboring points with regard to a given 

point. The calculation also indicates that the lattices in Fig.S1 are approximately an 

equilateral triangular lattice (see discussion below).  

Theorem 1: Points referred to the number in the series Dk, 2k ≥ , appear in the 

ascending branch of the function arcsin(sin(2 ))y nπμ= , 2 3μ = − ,  and satisfy the 

condition that if 0 < < kn D , then ( ) ( )> ky n y D . Points indexed by the number 
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series Ik, 2k ≥ , also appear in the ascending branch, and they approach the horizontal 

axis with increasing k.  

Proof: The rational approximation to 2 3μ = − obtained with the method of 

continued fraction, 
1

2
~

+

≈
k

k
k D

Dμ ,  is a best approximation to this irrational number4,6. 

The best approximation of a real number x is the rational fraction A B such that it has 

' 'B x A Bx A− > −  for 0 'B B< <  and ' 'A B A B≠ 4,6. Here A, B, A′, B′ are all 

positive integers. 

According to eq.(1) in the article, the point labeled with 0 is one belonging to the 

ascending branch of the function ( )( )arcsin sin 2y nπμ= , while points 1 and 2 are not. 

Point 3 also belongs to the ascending branch since 3 1 1 4μ − ≤ , so does point 4 since 

4 1 1 4μ − ≤ . Based on the theory of best approximation for a real number, it has 

1 2 1 1 4k kD D D Dμ μ−− < − <  for 3k ≥ . Consequently, the points labeled by Dk 

for 2k ≥  appear in the ascending branch. This means that the point specified by Dk 

approaches the horizontal axis with increasing k.   

Hence, for points labeled by a number n  in the ascending branch of the function 

( )( )arcsin sin 2y nπμ= , the following relation always holds: 

12 2π μ π μ −− > −k kn m D D , or ( ) ( )> ky n y D , for any 0 < < kn D , n and m are any 

positive integers. 

   The lattice defined by the points in one branch of the function 

( )( )arcsin sin 2y nπμ= can be only an approximate equilateral triangular lattice. To see 

this point, one needs check the side lengths of the triangle defined by points D0 (0) 

and other two points kD  and 1kD + , for instance D2 (4) and D3 (15), which forms a 

unit triangle in the lattice (Fig.S1). Let’s compare the distances of the points kD  and 

1kD +  to the origin D0 (0), under the condition that the ratio of the longitudinal scale to 
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the transverse scale is set at kγ γ=  such that the distance of kD to the origin is equal 

to that between kD and 1kD + , i.e., ( ) ( )0 1k k k k kd D D d D D += . Since  

( ) ( ) ( ) 222 2 2 2 2
0 12 4 k

k k k k k k k kd D D D D D Dγ π μ γ π μ−⎡ ⎤= + − = +⎣ ⎦            (6)  

( ) ( ) ( ) ( )

( ) ( )

222 2
1 1 1 1

2 2 2 2 2 2 1 2
1

2 2

4 2

k k k k k k k k k k

k k k
k k k

d D D D D D D D D

D D

γ π μ π μ

γ π μ μ μ

+ + + −

+ +
+

⎡ ⎤= − + − − −⎣ ⎦

= − + − +
    (7) 

and 

( ) ( ) ( ) 222 2 2 2 2 2
0 1 1 1 12 4 k

k k k k k k k kd D D D D D Dγ π μ γ π μ +
+ + + +⎡ ⎤= + − = +⎣ ⎦       (8) 

From eqs.(6) and (7), and using the iterative relations (1) and (3), and with the fact 

2 3μ = − , we get 

( )
2 2 1

2
2 2

1 1

4 3
8 6

k

k
k k k kD D D D

π μγ
+

− −

=
− +

                  (9) 

Substituting this 2
kγ  into eqs. (6) and (8), we get 

( ) ( )
( )

( )
2 2

1 12 2 2 2
0 1 2 2

1 1

5 2 3 6
4

8 6

k k k kk
k k k k k

k k k k

D D D D
d D D d D D

D D D D
π μ

− −
+

− −

⎡ ⎤+ − +⎣ ⎦= =
− +

  (10) 

( )
( )

( )
[ ]
( )

1 12 2 2 1 2 2
0 1

1 1

3 2
8 8

2 2
k k k kk k

k k
k k k k

D D D D
d D D

D D D D
μ

π μ π μ
− −+

+
− −

⎡ ⎤+ − −⎣ ⎦= =
− −

  (11) 

The difference between ( )2
0k kd D D  and ( )2

0 1k kd D D + is thus given by 

 2
10

2
0

2 )()( kkkkkk DDdDDd γδ =−= +               (12)  

This is to say that the unit triangle in the lattice defined by the ascending branch of the 

function ( )( )arcsin sin 2y nπμ= is not a rigorous equilateral triangle. It can, however, be 

a rigorous equilateral triangle in the extreme case whenγ k approaches zero. The same 

conclusion can be drawn for the descending branch.  

Now we further investigate the case that the triangle (D0, Dk+1, Dk+2), for instance 

(0, 15, 56) in Fig.3b, is a unit triangle in the lattice. Again, let’s check the distance 

between point 1kD + and point 2kD + , and their distances to the origin.  
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Let the ratio of the longitudinal scale to the transverse scale now be 1kγ γ +=  

when the distance from 1kD + to the origin is set equal to the distance between 

1kD + and 2kD + , i.e., ( ) ( )1 0 1 1 1 2k k k k kd D D d D D+ + + + += . Following the discussion 

concerning 2
kγ  in the above paragraph, we can get 

( )
2 2 3

2
1 2 2

1 1

4 3
105 58 8

k

k
k k k kD D D D

π μγ
+

+
− −

=
− +

                (13) 

and 

( ) ( )

( ) ( ) ( )
( )

2 2
1 0 1 1 1 2

2 2
1 12 2 2

2 2
1 1

57 32 3 34 16 3 5 2 3
4

105 58 8

k k k k k

k k k kk

k k k k

d D D d D D

D D D D

D D D D
π μ

+ + + + +

− −+

− −

=

⎡ ⎤+ + − − + +⎣ ⎦=
− +

   (14) 

( )
( )

( )
[ ]
( )

1 12 2 2 2 2 2 1
1 0 2

1 1

3 2
8 8

7 2 7 2
k k k kk k

k k
k k k k

D D D D
d D D

D D D D
μ

π μ π μ
− −+ +

+ +
− −

⎡ ⎤+ − −⎣ ⎦= =
− −

   (15) 

Thus finally we get, 

  2
120

2
110

2
11 )()( ++++++ =−= kkkkkk DDdDDd γδ  .     (16) 

This is to say that an approximate triangular lattice appears once again when the 

ratio of the longitudinal scale to the transverse scale is set at 1kγ γ += , and 2
1 1k kδ γ+ += .  

The deviation of the unit triangle (D0, Dk, Dk+1), at kγ γ= , from a rigorous 

equilateral triangle can be evaluated by the parameter 

)(
)()(

0
2

10
2

0
2

kk

kkkk
k DDd

DDdDDd +−
=Δ   . From eqs. (10) and (12) we get 

2
11

2 6)325(
)32(3

−− +−+
−

=Δ
kkkk

k DDDD
             (17)  

And from eqs.(14) and (16), it has 

( )
( ) ( ) ( )1 2 2

1 1

3 2 3

57 32 3 34 16 3 5 2 3
+

− −

−
Δ =

+ + − − + +
k

k k k kD D D D
        (18) 

Since ( )1 2 3− ≥ +k kD D , it can be easily shown that k k 1/ 1+Δ Δ < . This is to 
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say that the deviation from a rigorous equilateral triangle at 1kγ γ +=  is less than that 

at kγ γ= . At k → ∞ , 0kΔ → , and the points obtained from the ascending branch of the 

function ( )( )arcsin sin 2y nπμ=  form a rigorous equilateral triangular lattice. The same 

conclusion can be drawn for the descending branch. 

The scaling at k → ∞ is then operated on an equilateral triangular lattice, which 

reveals the presence of the directional scaling symmetry (along the horizontal 

direction in Fig.S1) for the equilateral triangular lattice.  

The connection line between point 0 and point 15 in Fig.3a, and the connection 

line between point 0 and point 56 in Fig.3b, are roughly at 15° ( / 12π ) respect to the 

horizontal axis. The calculation below points to the conclusion that the direction of 

scaling symmetry for the equilateral triangular lattice, going through a lattice point, 

lies at 15° with regard to any side of the unit triangle.  

Combining with eq.(8), the equality ( ) ( ) 1
1 12 2 k

k k ky D D Dπ μ πμ +
+ += − = , and the 

fact that 6 2sin(15 )
4

° −
= , we obtain,  for kγ γ= , 

( ) ( )
( ) 12 2 2 2 2 2

1 0 1
1

2 3
sin (15 ) 2 0

2
π μ

−° +
+ +

−

⎡ ⎤− −
⎢ ⎥− = ≥

−⎢ ⎥
⎣ ⎦

k kk
k k k

k k

D D
y D d D D

D D
  (19) 

At k → ∞ , the equality holds. Thus the direction of scaling symmetry for the 

equilateral triangular lattice is, setting the drag point at a lattice point, at 15°with 

respect to the side of the unit triangle.   

Combining eq.(9) and eq.(13), we can obtain the ratio of 2
1kγ +  over 2

kγ , 

( )
( )

2 2 22 1 11
2 2 2

1 1

8 6

105 58 8

μγ
γ

− −+

− −

− +
=

− +

k k k kk

k k k k k

D D D D

D D D D
               (20) 

At k → ∞ , 1 2 3− → +k kD D , we get    

 347lim 21 −==+

∞→
μ

γ
γ

k

k

k
                    (21) 
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Which is the scale factor involved in the directional scaling symmetry for the 

equilateral triangular lattice. Accordingly, the ratio of the side lengths of the unit 

triangles before and after the scaling is 2 3− . We notice that the scale factor is the 

squared ratio of side lengths of unit triangles involved in the directional scaling 

symmetry for equilateral triangular lattice. This is a notable feature of directional 

scaling symmetry.   

In summary, for the equilateral triangular lattice, scaling symmetry appears at the 

direction, going through a lattice point, at 15° with respect to the side of the unit 

triangle, the scale factor is 7 4 3− , and the side length of the unit triangle is scaled 

by 2 3μ = − . Such a deflation can be performed repeatedly.  

 

III. Silver number, octonacci sequence, and proof of directional scaling symmetry 

for square lattice 

   The proof of directional scaling symmetry for the square lattice follows the same 

procedure as for equilateral triangular lattice.  

   The quadratic equation 2 2 1 0x x− − = has two roots, one is the silver number3,7,8 

2 1σ = + , the other is 2− +1. Noticing that )8/tan()12(1 πσλ =−== − , thus 

both roots are characteristic numbers for the octagonal quasiperiodic structure3.  

Table 2 lists the k-th power of λ .  

Table 2. The k-th power of λ  

 
 
 
 
 
 
 
 
 
 
 
 

 λ k 
0 λ 0 = (−1)0+1 (  0 2 −  1)     
1 λ 1 = (−1)1+1 (  1 2 −  1)  =(−1)1+1 (  1λ  −   0)
2 λ  2 = (−1)2+1 (  2 2 −  3)  =(−1)2+1 (  2λ  −   1)
3 λ 3 = (−1)3+1 (  5 2 −  7)  =(−1)3+1 (  5λ  −   2)
4 λ 4 = (−1)4+1 (12 2 −17)  =(−1)4+1 (12λ  −   5)
5 λ 5 = (−1)5+1 (29 2 −41)  =(−1)5+1 (29λ  − 12) 
6 λ 6 = (−1)6+1 (70 2 −99)  =(−1)6+1 (70λ  − 29) 
... ...... 
k ( ) ( )1 1

1( 1) 2 ( 1)λ λ+ +
−= − − = − −k k k

k k k kO J O O   
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From the powers of λ , we can get two number sequences: one is 0, 1, 2, 5, 12, 29, 

70,…; the other is 1, 1, 3, 7, 17, 41, 99,…. These two sequences are dubbed the 

octonacci sequences3,7. In order to facilitate the following discussion, we denote the 

first sequence with O, the second with J, and the k-th items of these two sequences as 

Ok and Jk, respectively. The two octonacci sequences O and J have the same simple 

iterative relation 

1 1 0 12 , 0, 1;k k kO O O O O+ −= + = =              (22) 

1 1 0 12 , 1, 1;+ −= + = =k k kJ J J J J            (23)  

This is to say that they can be generated from the same iteration process with different 

initial items. For both sequences O and J, the ratio of an item over the preceding one 

approaches the silver number 2 1σ = +  at k → ∞ . The number sequences O and J 

have the relation 

1−= +k k kJ O O , or 1 , ( 1).+= − ≥k k kJ O O k      (24)  

Then, the k-th power of λ  can be expressed as  

( ) ( ) ( ) ( )1 1
11 2 1λ λ− −

−= − − = − −k kk
k k k kO J O O       (25)  

Combining eqs.(24) and (25), we get 

( )1
1 ( 1) 1λ λ λ−

−− = − −k k
k kJ J                      (26)  

From eq.(25), we see that the absolute value 1k kO Oλ −−  vanishes at k → ∞ .  

The octonacci sequence O satisfies the following relation, 

k
kkkkkkk OOOOOOO )1(]2[][ 2

1
2

12
2

1 −=−−=− ++++     (27) 

The number λ , which is irrational, can be expressed as a periodic, infinitely 

continued fraction, 2 1λ= - =[0, 2, 2, 2, 2, 2, 2, ...]. If the continued fraction is cut off 

at the k-th order, then we can get a rational approximation 1/~
+= kkk OOλ 4,6 for 2 1λ= - , 

the first item is defined as the 0-th order. With increasing k, the approximation 

approaches 2λ= -1 . 
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Just as in the case of function ( )( )arcsin sin 2y nπμ= , 2 3μ = − , unless that y 

assumes a value of / 2π , the points generated by the ascending (descending) branch 

(defined in eq.(2) in the article) of the function arcsin(sin(2 ))y nπλ= , 2λ= -1 , fall on 

the ascending (descending) branch of the function y=arcsin(sin )x , and the points on a 

line are separated at equal distance. Based on these facts, the points generated by a 

branch of the function arcsin(sin(2 ))y nπλ= form an oblique lattice (Fig.S3). This can 

be further confirmed by calculating the distances and orientations of neighboring 

points with regard to a given point. The calculation also indicates that the lattices in 

Fig.S3 are approximately a square lattice (see discussion below).  

 

Theorem 2: Points referred to the number in the series Ok, 2k ≥ , appear in the 

ascending branch of the function arcsin(sin(2 ))y nπλ= , 2λ= -1 , and satisfy the 

condition that if 0 < < kn O , then ( ) ( )> ky n y O . Points indexed by number series 

Jk, 2k ≥ , also appear in the ascending branch, and they approach the horizontal axis 

with increasing k.   

 

Proof: The approximation we obtained with the method of continued fraction  

1

~

+

≈
k

k
k O

Oλ is the best approximation to the silver number 2λ= -1
4.  

According to eq.(2) in the article, the point labeled with 0 is on the ascending 

branch, but point 1 is not. Point 2 is on the ascending branch since 2 1 1 4λ − ≤ . 

Based on the theory of best approximation, the absolute value 

1 2 1 1 4λ λ−− < − ≤k kO O  for 3k ≥ . So all points labeled with a number in the series 

Ok for 2k ≥  appear in the ascending branch of the function arcsin(sin(2 ))y nπλ= . 

Point 3 falls on the ascending branch since 3 1 1 4λ − ≤ . According to eq.(26), the 

absolute value 1 2 1 3 1 1 4λ λ λ+ − ≤ − = − ≤k kJ J J J  for 2k ≥ . So the points indexed 
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with the number series Jk+1 for 2k ≥  appear in the ascending branch of the function, 

and they approach the horizontal axis with increasing k. 

 

Theorem 3: Points labeled with the numbers 0 1 1, + +, ,k k kO O O J ( 2k ≥ ) form a unit 

parallelogram in the plot of the ascending branch of the function arcsin(sin(2 ))y nπλ= . 

Proof: From Theorem 2, we know that the points labeled with number 

0 1 1, + +, ,k k kO O O J  ( 2k ≥ ) are on the plot of the ascending branch. Let the ratio of the 

longitudinal scale to the transverse scale beγ k. Then, the slope of the straight line 

joining the origin 0O  and point kO  is 

0
( ) ( )

kO O k ky O x Oβ = .             (28) 

The slope of the straight line joining point 1kO +  and point 1+kJ  is 

[ ] [ ]
1 1 1 1 1 1( ) ( ) ( ) ( )β

+ + + + + += − −
k kO J k k k ky J y O x J x O .    (29) 

From eqs.(24), (25) and (26), we can get that 1 1 1( ) ( ) ( )γ+ + += = +k k k kx J J x O x O  

and ( )1 1 1( ) 2 ( ) ( )π λ+ + += − = +k k l k ky J J J y O y O . Putting these expressions into eq.(29), 

we get 

1 1 0
( ) ( )β β

+ +
= =

k k kO J k k O Oy O x O         (30) 

In a similar way we can prove that
1 0 1

β β
+ +

=
k k kO J O O . Hence, a conclusion can be drawn 

that the points labeled with number 0 1 1, + +, ,k k kO O O J  ( 2k ≥ ) form a parallelogram in 

the plot of the ascending branch of the function arcsin(sin(2 ))y nπλ= . 

 

Corollary: There is no other point labeled with number less than 1+kJ , but point 1kO + , 

whose corresponding value of the function arcsin(sin(2 ))y nπλ=  is less than that of 

1+kJ  ( 2k ≥ ). 

Proof: According to theorem 2, besides the origin there is no other point labeled with 
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number less than kO  whose corresponding value of the function arcsin(sin(2 ))y nπλ=  

is less than that of point kO . This is also true for point 1kO + . And according to theorem 

3, those points labeled with number 0 1 1, + +, ,k k kO O O J  ( 2k ≥ ) form a parallelogram. 

Such a parallelogram can be a unit, i.e., no other point falls in this parallelogram. 

From eq.(25) and eq.(26), we get that 1 1( ) ( ) ( )+ +< <k k ky O y J y O . So there is no other 

point labeled with number less than 1+kJ , but the point 1kO + , whose corresponding 

value of the function arcsin(sin(2 ))y nπλ=  is less than that of 1+kJ  ( 2k ≥ ). 

   The lattice defined by the points in the ascending (descending) branch of the 

function arcsin(sin(2 ))y nπλ= can be only approximately a square lattice. To verify 

this point, we compare the distances of points kO , 1kO + and 1+kJ  ( 2k ≥ ) to the origin. 

Let the ratio of the longitudinal scale to the transverse scale be kγ γ=  when the 

distance of point kO to the origin is set equal to that of point 1kO + , i.e., 

( ) ( )0 0 1k k k kd O O d O O += , we get  

( ) ( ) ( ) 222 2 2 2 2
0 12 4 k

k k k k k k k kd O O O O O Oγ π λ γ π λ−⎡ ⎤= + − = +⎣ ⎦            (31) 

( ) ( ) ( ) 222 2 2 2 2 2
0 1 1 1 12 4 k

k k k k k k k kd O O O O D Oγ π λ γ π λ +
+ + + +⎡ ⎤= + − = +⎣ ⎦       (32) 

( ) ( ) ( ) ( )22 22 2 2 2 2
0 1 1 1 12 4 1γ π λ γ π λ λ+ + + += + − = + −⎡ ⎤⎣ ⎦

k
k k k k k k k kd O J J J J J    (33) 

From eqs.(31) and (32), and the equality ( ) ( )0 0 1k k k kd O O d O O += , and the fact 

2 1λ = − , we get 

( )
2 2 1

2
2 2

1

8 k

k
k kO O
π λγ

+

+

=
−

                     (34) 

Putting the expression of 2
kγ  back into eq.(31) and eq.(32), we get 

( ) ( ) ( )
2 2

12 2 2 2
0 0 1 2 2

1

4
k kk

k k k k
k k

O O
d O O d O O

O O

λ
π λ

+
+

+

⎡ ⎤−⎣ ⎦= =
−

                (35) 
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( )
( ) ( ) ( )

( )
2 2 2 2 2

1 1 1 12 2 2
0 1 2 2

1

8
λ λ

π λ
+ + + +

+
+

⎡ ⎤+ − + − −⎣ ⎦=
−

k k k k k k k kk
k k

k k

O O O O O O O O
d O J

O O
  (36)  

For a rigorous square with a side length ( )0k kd O O , the squared length of the 

diagonal should be  

( ) ( )
( )

( )
2 2 2

2 12 2 2
0 0 2 2

1

2 2 8
k kk

k k k k
k k

O O
d O O d O O

O O

λ
π λ

+

+

−
⎡ ⎤ = =⎣ ⎦ −

     (37) 

The difference between ( )
2

02 k kd O O⎡ ⎤
⎣ ⎦  and ( )2

0 1+k kd O J  is thus 

( ) ( ) ( )

( )

2 2 1
2 2 2 2

0 1 0 1 12 2
1

2 2 1
1 1 2

2 2
1

82 2

8( 1) ( 1)

π λδ

π λ γ

+

+ + +
+

+
− −

+

⎡ ⎤= − = − + +⎣ ⎦−

= − = −
−

k

k k k k k k k k k
k k

k
k k

k
k k

d O J d O O O O O O
O O

O O

(38) 

In the deduction process above we have employed the equality 

2 2
1 12 ( 1)+ +− − = − k

k k k kO O O O .  

Thus, it can be concluded that points generated by the ascending (descending) 

branch of the function arcsin(sin(2 ))y nπλ= form an approximate square lattice when a 

proper value for γ  is chosen.  

The relative deviation of the diagonal length can be defined as  

( ) ( )2 2 2 2
0 1

2k
l

k k k kd O O O O

δ λη
λ+

= =
−

                        (39) 

Since kδ  may change sign with varying k, here the absolute value kδ  is 

adopted.  

This deviation satisfies the following inequality 

  
)43(

2
)(

2
)(

2

1
2

1
222

1
222

1 kkkkkkkk
k OOOOOOOO −−++ ++

=
−

<
−

=
λλ

λ
λη     (40) 

Since the value of kO increases with increasing k, so does lη . At k → ∞ , lη (k)=0, thus 

the plot of the ascending branch of the function arcsin(sin(2 ))y nπλ= forms a rigorous 

square lattice. The same conclusion can be drawn for the descending branch. 
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The scaling at k → ∞ is then operated on a rigorous square lattice, which reveals 

the presence of the directional scaling symmetry (along the horizontal direction in 

Fig.S2) for the square lattice.  

The connection line between point 0 and point 17 in Fig.5a, and the connection 

line between point 0 and point 29 in Fig. 5b, are roughly at 22.5°, or / 8π , with 

respect to the horizontal axis. Calculation below shows that the direction of scaling 

symmetry for the square lattice, going through a lattice point, lies at 22.5°with regard 

to the side of the unit square.  

Combining ( ) ( ) 1
1 12 ( 1) 2k k

k k ky O O Oπ λ πλ +
+ += − = − , the eq.(35) and the fact 

2 2sin(22.5 )
2

° −
=  (or 2 2 2sin (22.5 )

4
° −

= ), one obtains 

( ) ( ) ( )
( )

( )

2 2 2
2 12 2 2 1 2 2

1 0 1 2 2
1

2 2 2
2 2 1 1

2 2
1

2 2( )sin (22.5 ) 2 4
4

4 2
4

λ
πλ π λ

λπ λ

+° +
+ +

+

+ +

+

− −
− = −

−

⎡ ⎤−⎢ ⎥=
⎢ ⎥−⎣ ⎦

k kk k
k k k

k k

k k k

k k

O O
y O d O O

O O

O O
O O

  (41) 

Defining a relative deviation from the square as  

( )
( )

( )
( )

2 2 22 2 2
11 0 1

2 2 2 2
0 1 1

2( )sin (22.5 )

4

λ λ

λ

°
++ +

+ +

−−
Δ = =

−

k kk k k
k

k k k k

O Oy O d O O
d O O O O

     (42) 

As at k → ∞ , 1 2 1+ → +k kO O , hence 0kΔ → . Thus the direction of scaling 

symmetry, going through a lattice point, for the square lattice is at 22.5°with respect 

to the side of the unit square.   

From eq.(34), we can easily obtain the squared value for 1kγ γ += , or the ratio of 

the longitudinal scale to the transverse scale when ( ) ( )1 0 1 1 0 2+ + + +=k k k kd O O d O O , 

( )
2 2 3

2
1 2 2

1 1

8
3 4

k

k
k k k kO O O O

π λγ
+

+
+ +

=
+ +

          (43) 

Combining eqs. (25) and (43), one obtains the ratio of 2
1kγ +  over 2

kγ , 
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( )
( )

22
11

2
13

λγ
γ

++

+

−
=

+
k kk

k kk

O O
O O

           (44) 

Thus it has  

     223lim 21 −==+

∞→
λ

γ
γ

k

k

k
                (45)  

Which is the scaling factor involved in the directional scaling symmetry for the square 

lattice.   

From eq.(35), it is easy to get the squared distance from 1kO +  to the origin at 

1kγ γ +=  

( )
( )

( )
2 2

1 12 2 2 2
1 0 1 2 2

1 1

1 2 2 4
4

3 4

k k k kk
k k

k k k k

O O O O
d O O

O O O O
π λ

+ ++
+ +

+ +

⎡ ⎤+ + +⎣ ⎦=
+ +

     (46) 

Combining eqs.(35) and (46), we can get the ratio of squared side lengths of the 

approximate unit squares under the condition kγ γ=  and 1kγ γ += , respectively, 

( )
( )

( ) ( ) ( )

( ) ( )

3 22 1 171 0 1 2
2 10 1 1 3

1 2 2

3 1 2
λ

+
+ ++ +

+ +

+ + −
=

⎡ ⎤+ − +⎣ ⎦

k k k kk k

k k k k k k

O O O Od O O
d O O O O O O

      (47) 

Thus it has  

   ( )
( )

1 0 1

0
lim 2 1λ+ +

→∞
= = −k k

k k k

d O O
d O O

    (48) 

For the square lattice, again the scale factor for directional scaling symmetry is the 

squared ratio of side lengths of unit squares before and after the contraction along the 

directional scaling axis. 

In summary, for the square lattice, scaling symmetry appears at the direction, going 

through a lattice point, at 22.5° with respect to the side of the unit square, the scale 

factor is 3 2 2− , and the side length of the unit square is scaled by 2 1λ = − . Such a 

contraction can be performed repeatedly.  

 

IV. Obtaining honeycomb lattice from the equilateral triangular lattice 
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In order to obtain a honeycomb lattice by removing points from an equilateral 

triangular lattice as indexed in Fig.S1, the points to wipe off are chosen by the 

following rules: 

(1) Choose a point with index n=7a+12b , where n, a, b are all integers, thus this point 

can be specified with (a, b). Remove this point; 

(2) Next, remove the six points around point (a, b) given by (a+1, b+1), (a-1, b-1); 

(a+1,b), (a-1,b); and (a-2, b-1), (a+2,b+1). If the point has already been removed, 

ignore it; 

(3) Repeat step (2) until half of all points are removed and a honeycomb lattice is 

obtained. 
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