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Noether’s theorem is one of the fundamental laws of physics, relating continuous symmetries and
conserved currents. Here we explore the role of Noether’s theorem at the deconfined quantum critical point
(DQCP), which is a quantum phase transition beyond the Landau-Ginzburg-Wilson paradigm. It was
expected that a larger continuous symmetry could emerge at the DQCP, which, if true, should lead to
conserved current at low energy. By identifying the emergent current fluctuation in the spin excitation
spectra, we can quantitatively study the current-current correlation in large-scale quantum Monte Carlo
simulations. Our results reveal the conservation of the emergent current, as signified by the vanishing
anomalous dimension of the current operator, and hence provide supporting evidence for the emergent
symmetry at the DQCP. Our study demonstrates an elegant yet practical approach to detect emergent
symmetry by probing the spin excitation, which could potentially guide the ongoing experimental search
for the DQCP in quantum magnets.
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Introduction.—Noether’s theorem is a profound theorem
in physics that states every continuous (differentiable)
symmetry of a physical system is associated with a
corresponding conservation law [1]. Well-known examples
include momentum and energy conservation, when
the system respects space and time translation symmetries.
The conservation law usually manifests itself in the form
of a conserved current Jμ, which satisfies the equation
∂μJμ ¼ 0. Likewise, the observation of a conserved current
in a physical system usually serves as direct evidence of the
associated continuous symmetry.
In this Letter, we introduce an explicit application of

Noether’s theorem in identifying the emergent continuous
symmetry in an exotic quantum phase transition—the
deconfined quantum critical point (DQCP) [2–6]. The
DQCP describes a direct continuous transition between
two phases that spontaneously breaks very different sym-
metries. In particular, we focus on a type ofDQCPwhich has
only recently been identified in quantum Monte Carlo
(QMC) simulations [6,7], dubbed the easy-plane DQCP.
It is a direct quantumphase transition in a ð2þ 1ÞDquantum
spin model between the antiferromagnetic XY (AFXY)
ordered phase and the columnar valence bond solid
(VBS) phase. The AFXY (VBS) phase is described
by the ordering of a two-component spin order para-
meter ðNx; NyÞ [dimer order parameter ðDx;DyÞ], which

spontaneously breaks the in-plane U(1) spin rotation sym-
metry (Z4 lattice rotation symmetry). At the transition point,
both the spin and dimer order parameters fluctuate strongly
but with vanishing expectation values, such that the micro-
scopic Uð1Þ × Z4 is restored. Remarkably, it has been
suggested that the low-energy critical fluctuations could
respect an even larger emergent O(4) symmetry, which
corresponds to the full rotation of the combined four-
component order parameter ðDx;Dy; Nx; NyÞ. The emergent
O(4) symmetry, if it exists, is a hallmark of the easy-plane
DQCP [8–10].
Several methods have been developed to test the emer-

gent symmetry at the DQCP, including comparing the
critical exponents in spin and VBS channels [5–7,11–18],
plotting the order parameter histograms [5,11,17,19–23],
and probing the degenerated correlation spectra of spin-0
and spin-1 excitations [24,25]. But the conserved Noether
current that is directly associated with the emergent
continuous symmetry [26] has not been measured. In this
work, we directly probe the SO(4) current fluctuation at the
easy-plane DQCP and verify the current conservation by
measuring the scaling dimensions of the current-current
correlations.
Based on the field theoretical analysis, which captures

the emergent O(4) symmetry of the DQCP, we are able to
identify different components of the SO(4) current operator
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with the microscopic spin operator at different momenta.
We then measure imaginary-time correlation functions
of these spin fluctuations at the designated momenta in
large-scale QMC simulations to determine the critical
scaling of the current operator. The conservation of the
Noether current ∂μJμ ¼ 0 implies that the flux of the
current

R
∂Ω ϵμνλJμdxνdxλ through a close manifold ∂Ω in

the ð2þ 1ÞD spacetime must remain constant. As a result,
the conserved current should follow a precise scaling law
Jμ ∼ x−2 with the scaling dimension pinned at 2, which is
an integer instead of a usually fractional critical exponent
for generic operators [27]. By a systematic finite size
scaling of the numerical data, we are able to make
quantitative comparison of the measured scaling dimen-
sions with the field theoretical expectation.
Our results are in strong support of the emergent O(4)

symmetry, up to the largest system size L ¼ 96. The
emergent O(4) symmetry generally points to a continuous
transition at the easy-plane DQCP, although we can not rule
out the possibility of a symmetry-enhanced first-order
transition (plausibly due to a pseudocriticality[8]). Such
a possibility was recently reported in Refs. [20,29,30] in
several related models. Our attempt of bridging the con-
served current correlation from basic laws of physics with
large-scale numerical calculation of quantum many-body
systems provides a complementary and elegant way of
identifying the emergent continuous symmetry at quantum
phase transitions (not necessarily continuous), which are
becoming ubiquitously present in the new paradigms
of quantum matter such as various forms of DQCP
[2–6,14,17,19–21,29,31,32], frustrated magnets [22,
33–35], interacting topological phases [14,36–38], and
quantum electrodynamic systems [10,35,39]. Our numeri-
cal study of the conserved current at an emergent O(4)
symmetric DQCP will also guide future spectroscopy
experiments, neutron scattering for example, in search of
DQCP in candidate materials such as the Shastry-
Sutherland lattice compond SrCu2ðBO3Þ2 [25].
Model.—The easy-plane DQCP was reported in our

previous QMC simulation of the easy-plane J-Q (EPJQ)
model [6], which is a spin model on a two-dimensional
square lattice, as illustrated in Fig. 1(a). The model is
described by the following Hamiltonian:

HEPJQ ¼ −J
X
hiji

ðPij þ ΔSzi S
z
jÞ −Q

X
hijklmni

PijPklPmn; ð1Þ

where Si ¼ ðSxi ; Syi ; Szi Þ denotes the spin-1=2 operator on
each site i and Pij ¼ 1

4
− Si · Sj is the spin-singlet projec-

tion operator across the bond hiji. The summation of
hijklmni runs over all the six-site clusters containing three
parallel bonds hiji; hkli; hmni, as shown in Fig. 1(a), which
can be arranged either horizontally or vertically.
The J term describes the nearest neighboring antiferro-

magnetic (J > 0) spin interaction with an easy-plane

anisotropy introduced by the ΔSzi S
z
j term (0 < Δ ≤ 1).

The Q term describes the attractive (Q > 0) interaction
among three adjacent parallel dimers. The model admits
sign-free QMC simulations for all range of parameters. At
Δ ¼ 0, the model goes back to the SU(2) symmetric J-Q3

model [11,40,41]. With finite Δ > 0, the SU(2) spin
rotation symmetry is explicitly broken down to its U(1)
subgroup, describing the in-plane rotation of XY spins. We
define the tuning parameter q ¼ ðQ=J þQÞ (such that
0 ≤ q ≤ 1). When q → 0, the model favors the antiferro-
magnetic ordered phase of XY spins, denoted as the AFXY
phase. When q → 1, the VBS phase is favored. The AFXY
and VBS order parameters are defined as

Nx ¼
X
i

ð−ÞxiþyihSxi i; Dx ¼
X
i

ð−ÞxihPi;iþx̂i; ð2Þ

and Ny, Dy are similarly defined under x ↔ y, where ri ¼
ðxi; yiÞ labels the coordinate of site i on the square lattice
and x̂ ¼ ð1; 0Þ, ŷ ¼ ð0; 1Þ are lattice unit vectors. In
Ref. [6] it is shown that at Δ ¼ 1=2, the EPJQ model
exhibits a direct quantum phase transition between the
AFXY and VBS phases at qc ¼ ðQ=J þQÞc ¼ 0.62ð1Þ,
realizing the easy-plane DQCP. As argued based on dual-
ities [8,10,42], the critical point is expected to exhibit an
emergent O(4) symmetry at low energy, which rotates both
the AFXY and VBS order parameters together as an O(4)
vector n ¼ ðn1; n2; n3; n4Þ ¼ ðDx;Dy; Nx; NyÞ.
Conserved currents.—According to Noether’s theorem,

the proposed O(4) emergent symmetry at the easy-plane
DQCP must be accompanied with the corresponding
emergent conserved currents. The goal of this work is to
test these emergent conserved currents in numerics. We are
interested in the continuous SO(4) subgroup of O(4), which

FIG. 1. (a) The easy-plane J-Q (EPJQ) model and its phase
diagram. TheQ term describes the three-dimer interaction in both
horizontal and vertical directions, with the arrangement of site
indices shown on the right. (b) Obtained spin excitation spectra in
the Sx channel of the EPJQ model at the DQCP in our previous
work [7]. Darker color indicates higher intensity. The high
symmetry points in theBrillouin zone (BZ) are defined on the right.
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has six Lie group generators. Each generator Aab is labeled
by a pair of ordered indices a < b taken from a, b ¼ 1, 2, 3,
4, which generates the rotation between na and nb

components of the O(4) vector n. If the O(4) symmetry
indeed emerges at low energy, we should be able to observe
six conserved currents Jabμ , each corresponds to a generator
Aab with three space-time components labeled by μ ¼ 0, 1,
2 (the temporal component is the conserved charge den-
sity). By a simple counting, there are 6 × 3 ¼ 18 compo-
nents of the SO(4) conserved currents Jabμ (6 from ab and 3
from μ indices). Their low-energy and long-wavelength
fluctuations are expected to appear as quantum critical
fluctuations at the DQCP.
However we do not aim to observe all of the 18

components of Jabμ here, instead, we will focus on those
that are detectable in the spin excitation spectrum, which are
simpler to measure in QMC simulations (compared to the
dimer excitations) and are more relevant to scattering
experiments. It was found in Ref. [7] that at the critical
point, the spin excitation spectrum will become gapless
at four momentum pointsQ: (0,0), ðπ; 0Þ, ð0; πÞ, and ðπ; πÞ,
as shown in Fig. 1(b) for the Sx channel (the Sz channel
shares a similar shape). We will label these low-energy
fluctuations by

SQðqÞ ¼
X
i

SiðτÞeiq0τ−iðQþqÞ·ri ; ð3Þ

where SiðτÞ is the spin operator on site i at imaginary time τ
and q ¼ ðq0; qÞ labels the imaginary frequency andmomen-
tum. It turns out that 5 of the 18 components of Jabμ appear in
the spin excitation spectrum, as summarized in Table I.
These identifications are made by resorting to the field
theory description [26,43,44] of the easy-plane DQCP. The
detailed derivations are provided in Sec. I of the
Supplemental Material (SM) [45].
The first four currents J232 , J131 , J242 , J141 are associated

with the emergent rotational symmetry between AFXY and
VBS order parameters [7]. There is no such symmetry at
the lattice level, as is evident from the distinct forms of the
order parameters in Eq. (2). The emergent AFXY-VBS
rotation symmetry is the most crucial part of the O(4)
symmetry group that glues the microscopic U(1) and Z4

symmetries together. The observation of the conservation

law for these currents will provide direct evidence for the
emergent O(4) symmetry. Given that the above four
currents are related by the microscopic Uð1Þ × Z4 sym-
metry, it is sufficient to only focus on J232 , which corre-
sponds to the Sxðπ;0Þ spin fluctuation. By measuring whether

Sxðπ;0Þ has a vanishing anomalous dimension, we can

determine whether J232 is conserved or not. For comparison,
we also study the last (microscopic) conserved current J340
in Table I, in association with the microscopic U(1)
symmetry, which appears as the Szð0;0Þ spin fluctuation.

Numerical results.—Suppose the easy-plane DQCP has
the proposed O(4) emergent symmetry, this will put a
strong constraint on the correlation function of current
operators and the consequence can be tested in our QMC
simulation. For an emergent conserved current Jabμ , its
correlation function will be universally given by

hJabμ Jabν i ∼ jqj
�
δμν −

qμqν
jqj2

�
; ða; b ¼ 1; 2; 3; 4Þ; ð4Þ

which will not receive corrections from gauge fluctuations
and spinon interactions. Using the operator correspondence
in Table I, the current-current correlation in the field theory
can be translated to the spin-spin correlation in the lattice
model as

hSxðπ;0ÞSxðπ;0Þi ∼ hJ232 J232 i ∼ ðq20 þ q21Þ=jqj1−η
x
ðπ;0Þ ;

hSzð0;0ÞSzð0;0Þi ∼ hJ340 J340 i ∼ ðq21 þ q22Þ=jqj1−η
z
ð0;0Þ : ð5Þ

We have introduced two anomalous exponents ηxðπ;0Þ and

ηzð0;0Þ for general consideration. They will vanish separately
if their corresponding currents are indeed conserved.
In particular, the vanishing ηxðπ;0Þ will be nontrivial, as it

corresponds to the conservation of the emergent current J232
of AFXY-VBS rotation, which is not expected at the
microscopic level. In this way, we can determine the
emergent symmetry from the vanishing anomalous expo-
nent of the Noether current. Only a single exponent is
needed in this approach. This is different from measuring
the nonvanishing anomalous exponents of the order param-
eters in previous works for O(4) [6,19,39] and SO(5)
[5,11,13,15,41] cases, where one needs to compare expo-
nents of different order parameters to determine the
emergent symmetry. The conserved current correlation
offers an independent probe of emergent continuous
symmetry, which is complementary to previous approaches
such as the order parameter histogram [5,17,21].
In QMC simulations, the spin-spin correlationGa

Qðτ;qÞ≡P
ijhSai ðτÞSaj ð0ÞieiðQþqÞ·ðri−rjÞ (for a ¼ x, y, z) can be

directly measured in the imaginary time domain and the
momentum space. In order to make a comparison with the
numerics, we need to Fourier transform the previous field

TABLE I. Identification between low-energy spin excitations
and emergent SO(4) conserved currents.

Spin Q Current Related symmetry

Sx ðπ; 0Þ J232 ðDy; NxÞ rotation
Sx ð0; πÞ J131 ðDx; NxÞ rotation
Sy ðπ; 0Þ J242 ðDy; NyÞ rotation
Sy ð0; πÞ J141 ðDx; NyÞ rotation
Sz (0,0) J340 ðNx; NyÞ rotation
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theory predictions in Eq. (5) from Matsubara frequency
to imaginary time, following Ga

Qðτ; qÞ ¼
R
dq0e−iq0τ×

hSaQð−qÞSaQðqÞi. The results are

Gx
ðπ;0Þðτ; qÞ ∝ q22Fη

2
ðτ; qÞ þ ηþ 1

2
Fη

2
þ1ðτ; qÞjη¼ηxðπ;0Þ

;

Gz
ð0;0Þðτ; qÞ ∝ q2Fη

2
ðτ; qÞjη¼ηzð0;0Þ

; ð6Þ

where Fαðτ; qÞ ¼ j2q=τjαKαðjqτjÞ and KαðjqτjÞ is the αth
order Bessel K function (detailed derivations of Eq. (6) are
given in Sec. II of the SM [45]). The anomalous dimensions
ηxðπ;0Þ and η

z
ð0;0Þ are fitting parameters to be determined from

the data. The numerical determination of these exponents
from finite size QMC results will be the focus of the
narrative below.
Figures 2(a) and 2(b) depict the imaginary time corre-

lations Gx
ðπ;0Þðτ; q ¼ 0Þ and Gz

ð0;0Þðτ; qÞ, respectively. We

note that around Q ¼ ðπ; 0Þ, the spin-spin correlation
remains finite, so we take the QMC measurements at
ðπ; 0Þ; whereas around Q ¼ ð0; 0Þ the spin-spin correlation
vanishes with q, so we take QMC measurements at a small
momentum deviation 2π=L away from (0,0). Nevertheless,
the momentum deviation q in the fitting formula Eq. (6) is
still treated as a fitting parameter (of the order ∼ð2π=LÞ) to
partially take care of the finite-size effect. One can see that
for the system sizes considered, L ¼ 32, 48, 64, and 96 (the
others are not shown), the Bessel functions in Eq. (6) fit the
data well. In Figs. 2(a) and 2(b), we fit the imaginary time

data with ηxðπ;0Þ and η
z
ð0;0Þ as free fitting parameters. Because

the short (imaginary-)time data contain significant contri-
butions from high energy excitations, for which the fitting
function is no longer valid, we dynamically choose the
fitting range starting from an appropriate short-time cutoff
such that χ2=d:o:f. of the fitting is close to one. After fitting
all system sizes from L ¼ 16 to L ¼ 96, the scaling
dimensions ηxðπ;0Þ and ηzð0;0Þ are obtained, and their finite

size scalings are given in Fig. 3.
The extrapolated values of the fitted scaling dimensions

converge to zero for infinite size within numerical errors as
shown in Fig. 3. With the system size up to L ¼ 96 we
obtain ηxðπ;0Þ ¼ 0.002ð9Þ and ηzð0;0Þ ¼ 0.004ð6Þ indicating

FIG. 2. Spin-spin correlation functions measured at the DQCP
of the model in Eq. (1), qc ¼ 0.62, with inverse temperature β ¼
2L and L ¼ 32, 48, 64, 96. (a)Gx

ðπ;0Þðτ; qÞ and (b)Gz
ð0;0Þðτ; qÞ. All

curves in the figures are fitting results using Eq. (6).

FIG. 3. The anomalous scaling dimensions ηzð0;0Þ and ηxðπ;0Þ
obtained from the fitting in Fig. 2. As L increases, both ηzð0;0Þ
and ηxðπ;0Þ extrapolate to 0, consistent with the prediction of the

conserved currents in these two channels. Inset shows the
histogram of the extrapolated η obtained from many Gaussian
noise realizations of the finite size η values. The histogram of
both ηzð0;0Þ and ηxðπ;0Þ is centered at zero.

FIG. 4. The finite size extrapolation of the AFXY and VBS
order parameters at the easy-plane DQCP. The critical points qc
for each finite size L are determined from their corresponding
Binder ratio crossings, and the largest system size is L ¼ 96.
Inset shows the histogram of extrapolated hN2i ¼ 0.0009ð2Þ and
hD2i ¼ 0.0010ð3Þ.
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that the currents J152 and J120 are conserved. The conserva-
tion of J120 is just the consequence of spin Uð1Þ symmetry,
but the conservation of J152 is a remarkable observation in
favor of the emergent O(4) symmetry at the easy-plane
DQCP.
Discussions.—Lastly, let’s discuss the extrapolation of

the order parameters at the DQCP. As shown in Fig. 4, the
AFXY and VBS order parameters hN2i ¼ 1

2
ðhN2

x þ N2
yiÞ

and hD2i ¼ 1
2
ðhD2

x þD2
yiÞ are measured for various system

sizes at their corresponding finite size qcðLÞ [the determi-
nation of qcðLÞ is discussed in Sec. III of the SM [45] ], and
with system size up to L ¼ 96, the 1=L extrapolation gives
very small (if not zero) hN2i ¼ 0.0009ð2Þ and hD2i ¼
0.0010ð3Þ at the thermodynamic limit. So at this point, it is
possible that the easy-plane DQCP is similar to the recently
found symmetry-enhanced first-order transitions [20,29],
but with even weaker orders. It is also possible that both
order parameters eventually flow to zero, consistent with
the original DQCP scenario, i.e., a continuous transition.
We leave this to future studies.
To conclude, we have successfully demonstrated

Noether’s theorem in action in the frontier research of
quantum matter—to identify the emergent SO(4) continu-
ous symmetry at easy-plane DQCP. Our attempt stands out
as a new numerical tool in identifying emergent continuous
symmetry, ubiquitously present at novel quantum phase
transitions in DQCP, frustrated magnets, interacting topo-
logical phases, and quantum electrodynamic systems.
Comparing with the analyses of order parameter histogram
and critical exponents, our approach provides a comple-
mentary view point both in numerical accessibility and
theoretical elegance.
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