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Magnetic hopfion is a three-dimensional (3D) topological soliton with novel spin structure that would
enable exotic dynamics. Here, we study the current-driven 3D dynamics of a magnetic hopfion with a unit
Hopf index in a frustrated magnet. Attributed to the spin Berry phase and symmetry of the hopfion, the
phase space entangles multiple collective coordinates, thus the hopfion exhibits rich dynamics including
longitudinal motion along the current direction, transverse motion perpendicular to the current direction,
rotational motion, and dilation. Furthermore, the characteristics of hopfion dynamics is determined by the
ratio between the nonadiabatic spin transfer torque parameter and the damping parameter. Such peculiar 3D
dynamics of magnetic hopfion could shed light on understanding the universal physics of hopfions in
different systems and boost the prosperous development of 3D spintronics.
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Introduction.—Hopfions are three-dimensional (3D)
topological solitons initially proposed in the Skyrme-
Faddeev model [1–3]. The three spatial dimensions endow
hopfions with diverse configurations such as rings, links,
and knots that can be classified by the Hopf index QH, a
topological index that characterizes the homotopy group
Π3ðS2Þ classifying maps from S3 to S2 [4–7]. Although
hopfions were first studied in the contents of field theories,
they turn out to emerge in various physical systems, such as
optics, liquid crystals, Bose-Einstein condensates, super-
conductors, etc. [8–14]. Very recently, their magnetic
counterparts have been theoretically proposed in frustrated
magnets [15,16] and confined chiral magnetic heterostruc-
tures [17–19], further stimulating the study of hopfion from
a new respect.
While the sophisticated configurations of hopfion could

give rise to fascinating physical phenomena [5,20], many of
their physical properties, especially their dynamics, are still
largely unexplored. Low-dimensional magnetic topological
solitons like skyrmions and vortices have been extensively
studied over the past few decades with long lasting interest
in both their fundamental physical properties and potential
applications [21–23]. Therefore, it is also important to
unravel the dynamics of the magnetic hopfion, especially
its most essential dynamics driven by the spin transfer
torque (STT) under electric current. Hopfion dynamics
have been recently studied in confined chiral magnetic
heterostructures [24]. But in this case, hopfions are only
allowed to move in two spatial dimensions and the unique

physics associated with the third spatial dimension is
completely suppressed by the strong boundary condition.
In this Letter, we investigate the current-induced

dynamics of a magnetic hopfion in frustrated magnet,
where hopfions are free to move in all directions and their
full 3D dynamics can be explored. The hopfion studied
here has QH ¼ 1 and its motion is driven by both the
adiabatic and nonadiabatic STT effect [25–27]. Based on
the symmetry of hopfion’s spin configuration (Fig. 1),
two typical cases are studied, i.e., current in the torus
midplane and current perpendicular to the torus mid-
plane. As manifested by its 3D configuration, hopfion
possesses various types of dynamics including transla-
tional motion, rotation, and dilation. The spin Berry
phase of hopfion hosts an entangled phase space, which
further conjugates these dynamics and gives rise to more
exotic dynamical properties. All these dynamical behav-
iors can be captured by an analytical model derived in
terms of multidimensional collective coordinates and
generalized Thiele’s approach. A phenomenological
analysis is also employed to bridge the dynamics of
hopfion and skyrmion string.
Spin Berry phase and entangled phase space.—We

consider here a hopfion with QH ¼ 1. A typical hopfion
configuration can be achieved by a stereographic projection
from R3 to S3: χ ¼ ½ðx=rÞ sin f; ðy=rÞ sin f; ðz=rÞ sin f;
cos f�, followed by the Hopf map S0 ¼ hzjσjzi, where
the spinor jzi ¼ ðχ4 þ iχ3; χ1 þ iχ2ÞT, r2 ¼ x2 þ y2 þ z2,
and f is a function of r satisfying the boundary conditions
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fð0Þ ¼ π and fð∞Þ ¼ 0 [7]. Explicitly the configuration is
given by

Sx0 ¼
x
r
sin 2f þ yz

r2
sin2f;

Sy0 ¼
y
r
sin 2f −

xz
r2

sin2f;

Sz0 ¼ cos 2f þ 2z2

r2
sin2f: ð1Þ

This is the simplest ansatz of a hopfion with axial symmetry
about z axis. In this configuration, as shown in Fig. 1(a),
all the isospin contours with Sz ¼ 0 form a torus surface.
Since QH is geometrically interpreted as the linking
number [28], we show in the inset of Fig. 1(a) (upper
right corner) isospin contours of S ¼ �x̂, which are indeed
linked. This confirms the nontrivial topology of the spin
texture under investigation. Figures 1(b) and 1(c) show the
cross-sectional view of the spin textures at the xy and yz
planes, respectively.
As a topological soliton, hopfion has particlelike trans-

lational dynamics. The 3D anisotropic nature of the
configuration also allows the rotation of hopfion. We
can capture the essential dynamics of hopfion by analyzing
the collective coordinates of both translational and rota-
tional motion. The spin configuration of hopfion at position
r ¼ ðx; y; zÞ and time t can be expressed as Sðr; tÞ ¼
S0½Ôðr −RÞ�, where R ¼ ðX; Y; ZÞ characterizes the dis-
placement, and Ô is the rotation operator. At infinitesimal

rotation, Ô ≈ 1 −Θ · L̂, where L̂i ¼ εijkrj∂k is the angular
momentum operator and Θ ¼ ðΘx;Θy;ΘzÞ is the rotation
angle of hopfion around different axes.
The dynamics of localized spins is in general determined

by the spin Berry phase term of the Lagrangian [29–31]

LBP ¼
Z

ð1 − cos θÞ _ϕdV; ð2Þ

where θ and ϕ are the polar and azimuthal angle of the
localized spin S with unit length. By integrating out the
spin configuration, the variation of the spin Berry phase
term δLBP ¼

R
S · δS × _SdV can be written in terms of the

slow-varying collective coordinate as

δLBP ¼ DðΘx
_Y − Θy

_XÞ þ IΘy
_Θx; ð3Þ

where D ¼ −
R
S0 · ðz∂xS0 − x∂zS0Þ × ∂xS0dV and I ¼R

S0 · ðz∂x − x∂zÞS0 × ðy∂z − z∂yÞS0dV. In Eq. (3), all
other terms drop out due to parity of the spin configuration.
It clearly shows the rotations about x and y axes are
canonical conjugate to each other. Through the entangle-
ment between the displacement and rotation, translations
along the x and y directions are intertwined as well. The
longitudinal motion of hopfion is thus accompanied by
transverse displacement and complex rotations.
It is noted that the z-axis related displacement (Z) and

rotation (Θz) are missing in Eq. (3) due to the symmetry of
hopfion configuration. To capture these dynamics, it is
necessary to include the auxiliary dilation of the hopfion
configuration Sðr; tÞ ¼ S0ðλrÞ, where λ is a time-
dependent dilation factor and at equilibrium λ ¼ 1. The
variation with respect to λ then contributes an additional
term to the spin Berry phase

δLz
BP ¼ ðΩ _Z þ Γ _ΘzÞδλ; ð4Þ

where Ω ¼ R
S0 · ðr · ∂rS0 × ∂zS0ÞdV and Γ ¼ R

S0 ·
½r · ∂rS0 × ðx∂y − y∂xÞS0�dV. This additional term shows
the dilation is conjugated to both the displacement and
rotation about the z axis. The equation of motion taken
from the variation of λ leads to the simultaneous translation
and rotation. It should be noticed that the dilation is not a
collective coordinate since an energy change is associated
with a dilation of the configuration. Nevertheless, it plays
an important role in correctly determining the correspond-
ing hopfion dynamics. Equations (3) and (4) illustrate that
the hopfion moves in a phase space where displacement,
rotation, and dilation are all entangled to each other.
Current-driven hopfion dynamics.—To validate our

analysis, numerical simulations were performed in order
to precisely capture the hopfion dynamics. We employ a
frustrated Heisenberg Hamiltonian H ¼ −

P
hi;ji JijSi · Sj,

in which the summation of the exchange interaction is

y

x
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y
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z
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FIG. 1. (a) Isospin contours with Sz ¼ 0 for a magnetic hopfion
with QH ¼ 1. Inset is the isospin contours of S ¼ þx̂ (red) and
S ¼ −x̂ (cyan) that demonstrate the unity linking number of the
hopfion. (b) and (c) are the cross sections of hopfion onto xy (b)
and yz (c) planes, as depicted by the gray arrows. At the initial
state, the torus midplane lies in the xy plane. In the color scheme,
black indicates Sz ¼ −1 and white indicates Sz ¼ 1. The color
wheel stands for in-plane spin directions.
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extended up to the fourth nearest neighbor. Here, we choose
the following parameters J1 ¼ 1, J2 ¼ −0.164, J3 ¼ 0,
J4 ¼ −0.082, where the subindices represent the orders of
nearest neighbors and all the energy terms are normalized
to the value of J1, the nearest neighbor exchange [32].
We choose sin f ¼ 2rλ=ðr2 þ λ2Þ as the initial state
where λ ¼ 1. A stable hopfion configuration (Fig. 1) is
obtained by a direct energy minimization. Symmetry of this
stable configuration is the same as the prototype shown
by Eq. (1).
The magnetization dynamics were calculated by solving

the Landau-Lifshitz-Gilbert (LLG) equation with the STT
terms:

dS
dt

¼ −γS ×Beff þ α

S
S ×

dS
dt

þ Pa3

2eS
ðj ·∇ÞS

−
Pa3β
2eS2

S × ðj ·∇ÞS: ð5Þ

Here, γ is the gyromagnetic ratio, α is the damping
constant, P is the spin polarization, a is the lattice constant,
and j is the current density. Beff ¼ −ð1=μBSÞð∂H=∂SÞ is
the effective magnetic field and S is the spin length, which
is fixed to be 1 here for simplicity. The last two terms in
Eq. (5) describe the STT induced by an applied current j
and β quantifies the nonadiabatic STT effect.
We begin with the current applied in the xy plane. The

simulation results for a current applied along the x axis
are summarized in Fig. 2. The hopfion dynamics can be
illustrated by using its center position and normal vector of
the torus midplane, as shown in Fig. 1(a). At the initial
state, the center position is located at the origin, the
midplane lies in the xy plane and its normal vector is
aligned with the z axis. In the case with β ¼ 0 and α ¼ 0.1
(β < α), two transverse motions (ΔY and ΔZ) are asso-
ciated with a longitudinal motion (ΔX) along the current
direction [Figs. 2(a) and 2(b)]. Meanwhile, Fig. 2(c) shows
the evolution (red dots) of the directional vector normal
to the midplane (red arrow), which describes the rotation of
the hopfion.
More interestingly, the nonadiabatic β term significantly

affects the hopfion dynamics. In the case with β ¼ 0.2 and
α ¼ 0.1 (β > α), the sign of ΔY is reversed while that of
ΔZ is unchanged compared to the β < α case. In contrast,
for the rotational motion, the sign of both Θx and Θy are
reversed as shown in Fig. 2(d). However, once β ¼ α, all
transverse motions and rotations are suppressed, and the
hopfion moves straight ahead along the current direction.
For more comprehensive details of the hopfion dynamics,
see Ref. [32].
To further understand the dynamics, we derive the

equations of motion for hopfion in the presence of the
STT effect. A conventional approach proposed by Thiele is
to first apply the operator ∂S0=∂ri · ðS0×Þ on both sides of
the LLG equation, so that the velocity on the left hand side

equals to the force density on the right [33,34]. However,
such an approach describes the translational motion only.
Notice that the term ∂S0=∂ri can be understood as the
momentum operator acting on the spins. Therefore, we can
generalize the Thiele’s approach by applying the operator
L̂S0 · ðS0×Þ on both sides of the LLG equation where L̂ is
the angular momentum operator introduced in the spin
Berry phase part. In this way, we can get additional terms
relating the angular velocity to the torque density. The full
set of equations of motion are summarized as [32]

D _Θx þ αKRR
_Y þ αKRΘ _Θy ¼ βKRRξjy;

−D _Θy þ αKRR
_X þ αKRΘ _Θx ¼ βKRRξjx;

D _X − I _Θx þ αKRΘ _Y þ αKΘΘ _Θy ¼ βKRΘξjy þDξjx;

−D _Y þ I _Θy þ αKRΘ _X þ αKΘΘ _Θx ¼ βKRΘξjx −Dξjy;

ð6Þ

with ξ ¼ Pa3=2e. KRR ¼ R ∂xS0 · ∂xS0dV, KRΘ¼R ∂xS0 ·ðy∂z−z∂yÞS0dV, and KΘΘ¼
R ½ðy∂z−z∂yÞS0�2dV

are components of the dissipative tensor. The nondissipa-
tive terms, namely the terms without α on the left hand side
of each equation, are consistent with the Berry phase
analysis, indicating such a general approach is a proper
method for handling hopfion dynamics. By solving Eq. (6)
for a current applied along the x axis (jx), we have _X ∼ jx,
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FIG. 2. Hopfion dynamics in the presence of an in-plane current
applied in the x direction (jx ¼ 0.5 × 1010 Am−2). (a) and
(b) show the displacements of the hopfion center in the y and
z direction (ΔY and ΔZ) versus the displacement in x direction
(ΔX) for different values of β. Inset: Current density dependence
of the longitudinal velocity (vx). (c),(d) Rotational motion of
hopfion with β < α (c) and β > α (d). The red arrows represent
the normal vector of the hopfion’s midplane. The red dots are the
corresponding angles of the torus midplane projected onto a unit
sphere at different simulation time. The blue arrows indicate the
direction of rotation.
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_Y ∼ ðα − βÞjx, _Θx ∼ ðα − βÞjx, and _Θy ∼ ðα − βÞjx. _Y, Θx,
and Θy all depend on (α − β) so that their signs depend on
the ratio between β and α. Once α ¼ β, only _X has a
nonzero value and only a translational motion along the
current direction is allowed. Finally, the longitudinal
velocity vx ¼ _X is linearly proportional to the current
density jx. All these results are consistent with the hopfion
dynamics shown in Fig. 2.
While Eq. (6) can capture the hopfion dynamics with

current in the midplane, the dynamics associated with the
current component perpendicular to the midplane is com-
pletely missing. To imitate the discussion of spin Berry
phase [Eq. (4)], an auxiliary dilation term is included in
order to fully understand the hopfion dynamics. Under the
small dilation approximation (λ ∼ 1), the processional term
related to Beff can be still neglected [32]. In addition to the
linear momentum and angular momentum approaches
applied before, we can apply ðr · ∂rÞS0 · ðS0×Þ on both
sides of the LLG equation and then get the equations of
motion along normal direction to the torus midplane,

_Z ¼ K1Ω − K2Γðβ=αÞ
K1Ω − K2Γ

ξjz;

_Θz ¼ −
K2Ω

K1Ω − K2Γ
ð1 − β=αÞξjz;

_λz ¼ −α
ΩΛ

K1Ω − K2Γ
ð1 − β=αÞξjz; ð7Þ

with Λ ¼ Kz
RRK

z
ΘΘ − ðKz

RΘÞ2, K1 ¼ ΩKz
ΘΘ − ΛKz

RΘ, and
K2 ¼ ΩKz

RΘ − ΛKz
RR. The parameters Kz

RR, K
z
RΘ, and Kz

ΘΘ
are defined as Kz

RR ¼ R ð∂zS0Þ2dV, Kz
RΘ ¼ R ∂zS0 ·

ðx∂y − y∂xÞS0dV, and Kz
ΘΘ ¼ R ½ðx∂y − y∂xÞS0�2dV. It

needs to be emphasized that in Eqs. (6) and (7), the current
direction is relative to the midplane of the hopfion’s torus
configuration. During the hopfion dynamics, the coordinate
must be corotating as well.
Combining these equations of motion, the hopfion

dynamics shown in Fig. 2 can be readily understood in
the following way. The current jx first induces an entangled
dynamics including the longitudinal motion (ΔX), trans-
verse motion (ΔY), and rotations (Θx and Θy). As the
midplane of hopfion starts to deviate from the xy plane, the
current can be decomposed into two components, one in
the midplane (jk) and one normal to the midplane (jz).
While the former component is still responsible for the
entangled dynamics mentioned above, the hopfion motion
ΔZ along the normal direction starts to develop according
to Eq. (7).
To examine the dynamics in the normal direction, we

study the hopfion dynamics under jz. The corresponding
simulation results are summarized in Figs. 3(a)–3(c). The
current induces a translational motion of hopfion along its
direction in combination with a dilation and rotation about

the z axis. The dilation type is determined by the ratio
between β and α [Fig. 3(c)]. When β < α, the hopfion is
compressed (expanded) by a negative (positive) current and
the case is reversed for β > α, while for β ¼ α, both dilation
and rotation are absent. It is worth mentioning that the
expansion and compression of hopfion are not quite
symmetric since there is an energy barrier to prevent
further compression of hopfion in order to maintain its
topology. The velocity of hopfion vz ¼ _Z here is also
linearly proportional to the current density [Fig. 3(b)]. All
these dynamics are well described by Eq. (7). Note that at a
long enough time frame, the hopfion may become unstable
and collapse or stop moving in the cases with α ≠ β since
its energy is increased due to the dilation.
The interesting dilation of hopfion can be also under-

stood phenomenologically in terms of the skyrmion string.
A QH ¼ 1 hopfion can be recognized as a 2π twisted
skyrmion string with its two ends glued together and thus a
skyrmion-antiskyrmion pair is formed in any cross-section
plane including the z axis (e.g., xz or yz plane), similar to
that shown in Fig. 1(c). To further illustrate the hopfion
dynamics, the emergent magnetic field Bi ¼ 1

2
εijkS ·

ð∂jS × ∂kSÞ is calculated based on the hopfion configura-
tion in Fig. 1(c) and the Bx is shown in color in Fig. 3(d).
The current-driven motion of skyrmion has a transverse
component, i.e., the skyrmion-Hall effect [21,31,35,36].
The corresponding skyrmion-Hall angle is determined by
the topological charge, or in identical terms, the emergent
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FIG. 3. (a) Hopfion dynamics under out-of-plane applied
current (jz). A translational motion along the current direction
is associated with a dilation depending on the ratio β=α.
(b) Current density dependence of the hopfion velocity (vz)
for different values of β. (c) Diameter change of hopfion during
its translational motion (jz ¼ 0.5 × 1010 Am−2). (d) Calculated
Bx based on the spin texture shown in Fig. 1(c). The arrows
represent the velocities of skyrmion and antiskyrmion under an
applied current along positive z direction for β < α (solid) and
β > α (dashed).
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magnetic field of the skyrmion. More importantly, the sign
of the skyrmion-Hall angle depends on the ratio between β
and α [21,37–39] as shown by the arrows in Fig. 3(d). As a
result, the skyrmion-antiskyrmion pair shown in Fig. 3(d)
responds to a current in the z direction by moving towards
or away from each other during their motion along z.
The same is true for any cross section slicing the hopfion.
When the skyrmion and antiskyrmion move toward (away
from) each other, the hopfion is compressed (expanded).
The hopfion dynamics can thus also be phenomenologi-
cally understood as a collective motion of skyrmion-
antiskyrmion pairs, making the connection of soliton
dynamics across dimensionality.
Conclusion.—Current-driven 3D dynamics of magnetic

hopfion have been studied both analytically and numerically.
The hopfion exhibits rich dynamics of entangled translation,
rotation and dilation. Since our theory is built on the
collective coordinates that is independent of details of spin
interactions, it suggests the universality of the reported
dynamics in all existing and forthcoming hopfion models,
not only in magnetism, but also in other physical systems
[5,20,40,41]. Collective dynamics of multiple hopfions and
hopfion lattices could also be investigated based on the
collective coordinates [42,43]. Owing to their novel top-
ology, hopfions may exhibit nontrivial electronic signatures
and the presence of disorders may also affect their dynamics
by, e.g., modifying their Hall angles [38,39]. These interest-
ing dynamics could be experimentally accessed through
topological Hall-type measurements, noise measurements,
or 3D x-ray tomography [44–48]. The rich dynamics hosted
by a QH ¼ 1 hopfion further foreshadows more exotic
dynamics for hopfions with higher QH and their potentials
in spintronic applications [49].
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