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a b s t r a c t

We present an open-source program irvsp, to compute irreducible representations of electronic states
for all 230 space groups with an interface to the Vienna ab-initio Simulation Package. This code is fed
with plane-wave-based wavefunctions (e.g. WAVECAR) and space group operators (listed in OUTCAR),
which are generated by the VASP package. This program computes the traces of matrix presentations
and determines the corresponding irreducible representations for all energy bands and all the k-points
in the three-dimensional Brillouin zone. It also works with spin–orbit coupling (SOC), i.e., for double
groups. It is in particular useful to analyze energy bands, their connectivities, and band topology, after
the establishment of the theory of topological quantum chemistry. Accordingly, the associated library
– irrep_bcs.a – is developed, which can be easily linked to by other ab-initio packages. In addition, the
program has been extended to orthogonal tight-binding (TB) Hamiltonians, e.g. electronic or phononic
TB Hamiltonians. A sister program ir2tb is presented as well.
Program summary

Program title: irvsp
CPC Library link to program files: https://doi.org/10.17632/y9ds5nnm2f.1
Licensing provisions: GNU Lesser General Public License
Programming language: Fortran 90/77
Nature of problem: Determining irreducible representations for all energy bands and all the k-points
in 230 space groups. It is in particular useful to analyze energy bands, their connectivities, and band
topology.
Solution method: By computing the traces of matrix presentations of space group operators for the
eigen-wavefunctions at a certain k-point in a given space group, one can determine irreducible
representations for them.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Topological states have been intensively studied in the past decades [1–9]. During the period, lots of materials have theoretically
been proposed to be topological insulators and topological semimetals, based on calculations within the density-functional theory
(DFT) [10–16]. Many of them are verified in experiments, and substantially intrigue much interest in theories and experiments, such
as three-dimensional (3D) topological insulator Bi2Se3 [17–19], Dirac semimetals Na3Bi [20,21] and Cd3As2 [22,23], Weyl semimetal
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TaAs [24–27], topological crystalline insulator SnTe [28,29] and hourglass material KHgSb [30,31] et al. To some extent, these
topological electron bands are related to a band-inversion feature. Explicitly, there can be a band inversion between different irreducible
representations (IRs) of the little groups at k-points in the 3D Brillouin zone (BZ) [32]. In the situation of Dirac semimetals or nodal-line
semimetals, the band inversion may happen on a high-symmetry line or in a high-symmetry plane.

Very recently, new insights about band theory have been used to classify all the nontrivial electron band topologies compatible with
a given crystal structure [33–36]. In particular, based on the theory of topological quantum chemistry (TQC) [36–39], the topology of a
set of isolated electron bands is relied on IRs at the maximal high-symmetry k-points (HSK), as the compatibility relations are obtained
in Ref. [40], and open accessible on the Bilbao Crystallographic Server (BCS) [41,42]. The set of maximal HSK points can be found by
using the BCS. The determination of the IRs of electron bands at maximal HSK points is of great interest, for which the program –
vasp2trace – was developed [12]. However, it is not suitable for any non-maximal HSK points.

Generally speaking, in order to obtain the IRs for electron energy bands in crystals, two ingredients are necessary: (a) wave-functions
(WFs) at k-points and (b) character tables (CRTs) for k-little groups. Different versions of the codes can be developed based on the
different types of the WFs and conventions of the CRTs. The program irrep in the WIEN2k package [43,44] is a precursor in determining
the IRs, which is based on the plane-wave (PW) basis (the part of the WFs outside muffin-tin spheres) and the CRTs of 32 point groups
(PNGs). There is an advantage of describing the IRs in terms of the more well-known PNG symmetries; however, the disadvantage is
that in many cases k-points on the BZ surface cannot be classified with PNGs for nonsymmorphic crystals. In this paper, the program
– irvsp – is developed based on the CRTs on the BCS. It originates from the WIEN2k irrep code [43,44] that considers both single
and double groups, analyses of time-reversal symmetry, and handles accidental degeneracies. The present code inherits those features
but it has been extended to also be able to determine IRs of those special k-points for nonsymmorphic crystals. Hence, the code labels
the IRs according to the convention of the BCS notation [42] for 230 space groups (SGs). In fact, it works for 1651 magnetic space
groups (MSGs), once the space group number of the unitary part of MSGs is correctly given. In addition, Wannier-based tight-binding
(TB) models are widely used to study the topological properties of real materials, including topological surface states and symmetry
indicators. To get the band representations and check the topology of these models, a sister program – ir2tb – is developed to interface
with orthogonal TB Hamiltonians, e.g. electronic or phononic TB Hamiltonians.

This paper is organized as follows. In Section 2, we present some basic derivations to compute the traces of matrix presentations
(MPs) in different bases. In Section 3, we introduce the general process of the code. In Section 4, we introduce the capabilities of this
package. In Section 5, we introduce the installation and basic usages. In Section 6, we introduce some examples in order to show how
to use irvsp to determine the IRs and further explore the topology.

2. Methods

Space-group operations (SGOs), Os = {Rs|vs}, consist of two parts: a rotation part Rs and a translation part vs. The product of
two operations is defined as {Rs|vs}{Rt |vt} = {RsRt |Rsvt + vs}. An operator acting on a scalar function in real space is expressed by
Osf (r) = f (O�1

s r) = f (R�1
s r � R�1

s vs) (There is a typo in Section A of the supplementary information of Ref. [12]). The MPs, Omn
s , can be

computed in the basis of the Bloch wavefunctions | nki: Omn
s = h mk

|Os| nki. The traces of the obtained MPs are the characters, and
they are essential to determine the corresponding IRs of the little group (LG) of k. The LG of k [LG(k)] is defined as a set of SGOs:

LG(k) : {Os|Rsk = k + G}, with G = lg1 + mg2 + ng3, l,m, n 2 N (1)

Here, G could be any integer reciprocal lattice translation (g1, g2, g3 are primitive reciprocal lattice vectors). The traces of MPs of SGOs
are defined as:

Tr[Os] =
X

n

Onn
s with Onn

s = h nk|Os| nki , Os 2 LG(k). (2)

Here, the WFs have to be normalized (i.e., h nk| nki = 1).
Under different bases, the WFs can be expressed in different ways, and the derivations of Eq. (2) are different. Here, we have derived

the expressions in two bases: (i) PW basis and (ii) TB basis. In what follows, symbols in the bold text are vectors, and common braket
notations are employed:

h
r|Ai ⌘ A(r)

hA|Bi ⌘
Z

dr A⇤(r)B(r)

h
r|ki ⌘ eik·r

To be convenient, we present the derivations in the cases without the spin degree of freedom. However, the derivations can be
easily extended to the cases including SOC, by substituting Rs ⌦ SUs(2) for Rs, where the bases are doubled by the direct product:
{PW/TB basis} ⌦ {|"i , |#i}. In fact, the code works for both single and double groups.

2.1. Plane-wave basis

In the PW basis, wavefunctions/eigenstates are expressed in the basis of plane waves:

 nk(r) =
X

j

C
k,jei(k+Gj)·r with

⌦
k + Gi|k + Gj

↵ = �ij (3)

The coefficients (C
k,j) are usually computed in the ab-initio calculations and output by the DFT package (e.g. VASP, PWscf, etc.). The

SGOs acting on WFs are derived as:

Os nk(r) =
X

j

C
k,jei(k+Gj)·(R�1

s r�R�1
s vs)

2
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=
X

j

C
k,jeiRs(k+Gj)·(r�vs)

=
X

j

C
k,jei(k+Gj0 )·(r�vs) with k + Gj0 ⌘ Rs(k + Gj)

= e�ik·vs
X

j

C
k,je�iGj0 ·vs ei(k+Gj0 )·r with Gj0 ⌘ Rs(k + Gj) � k

Then, Eq. (2) can be written as:

h nk|Os| nki = e�ik·vs
X

j

C⇤
k,j0Ck,je�iGj0 ·vs with Gj0 ⌘ Rs(k + Gj) � k (4)

The program irvsp is developed based on the above derivations with the interface to VASP [45]. In addition, the library of the code is
developed (see details in Appendix A.6), which can be downloaded from the public code archive: https://github.com/zjwang11/irvsp/
blob/master/lib_irrep_bcs.tar.gz. The library – irrep_bcs.a – can be easily linked to by other ab-initio packages, once a proper interface
is made.

2.2. Orthogonal tight-binding basis

In a TB Hamiltonian, WFs are expressed in the basis of exponentially localized orthogonal orbitals: |
0, µ↵i ⌘ �µ

↵ (r) ⌘ �↵(r � ⌧µ)
and

��
Lj, µ↵

↵ ⌘ �↵(r� Lj � ⌧µ), where µ label the atoms, ↵ label the orbitals, Lj label the lattice vectors in 3D crystals, and ⌧µ label the
positions of atoms in the home unit cell. At a given k-point, WFs are given as:

 nk(r) =
X

µ↵

Cn
µ↵,k�

µ
↵k(r) where n is a band index, (5)

�
µ
↵k(r) =

X

j

�↵(r � ⌧µ � Lj)eik·(Lj+⌧µ),
D
�

µ0
�k|�µ

↵k

E
= �µµ0�↵� (6)

The states �µ
↵k(r) are the Fourier transformations of the local orbitals �µ

↵ (r), as shown in Eq. (6). The coefficients are obtained as the
eigenvectors of the TB Hamiltonian: Hµ0�,µ↵(k) = P

j e
ik·(Lj+⌧µ�⌧µ0 )

D
0, µ0�|Ĥ|Lj, µ↵

E
. The rotational symmetries Rs acting on the local

orbitals [�↵(r)] at the µ site are given as:

dRs�↵(r) ⌘ Rs�↵(r) =
X

�

�� (r)D
s,µ
�↵ (7)

These D-matrices are explicitly given in Table A.3 in Appendix A.2. Under the basis of real spherical harmonic functions with different
total angular momenta (integer l), these D-matrices are real.

The SGOs acting on the states �µ
↵k(r) are given below:

Os�
µ
↵k(r) = �

µ
↵k(R

�1
s r � R�1

s vs)

=
X

j

�↵(R�1
s r � R�1

s vs � ⌧µ � Lj)eik·(Lj+⌧µ)

=
X

j

�↵(R�1
s [r � vs � Rs⌧µ � RsLj])eik·(Lj+⌧µ)

=
X

j

dRs�↵[r � vs � Rs⌧µ � RsLj]ei(Rsk)·Rs(Lj+⌧µ) with dRs�↵(r) ⌘
X

�

�� (r)D
s,µ
�↵

= e�i(Rsk·vs)
X

j

dRs�↵[r � (vs + Rs⌧µ) � RsLj]ei(Rsk)·[RsLj+(Rs⌧µ+vs)]

= e�i(Rsk·vs)
X

j

dRs�↵[r � (⌧µ0 + L

i
0) � RsLj]ei(Rsk)·[RsLj+(⌧µ0+L

i
0)] using vs + Rs⌧µ = L

i
0 + ⌧µ0

= e�i(Rsk·vs)
X

j0
dRs�↵[r � ⌧µ0 � Lj0 ]ei(Rsk)·[Lj0+⌧µ0 ] with Lj0 = L

i
0 + RsLj

= e�i(Rsk·vs)
X

�

�
µ0
�,Rsk(r)D

s,µ
�↵

Thus, Eq. (2) is written as:

h nk|Os| nki = e�i(Rsk·vs)
X

↵µ,�

(Cn
µ0� )

⇤ei(Rsk�k)·⌧µ0Ds,µ
�↵ C

n
µ↵ with vs + Rs⌧µ = L

i
0 + ⌧µ0 (8)

In a matrix format,

h nk|Os| nki = e�i(Rsk·vs)
h
C†V (Rsk � k)DC

i

nn
(9)
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Table 1

A brief summary of key subroutines.
File Description Input
wave_data.f90 Reading the coefficients C

k,j . WAVECAR
init.f90 Reading lattice vectors and space group operators, and setting up the Z and Z�1 matrices. OUTCAR
kgroup.f90 Determining the k-little groups.
nonsymm.f90 Retrieving the character tables from the BCS
chrct.f90 Computing the traces through Eq. (4), and determining the IRs

with V (k)µ0�,µ↵ = eik·⌧µ�µµ0�↵� , Cµ↵,n = Cn
µ↵,Dµ0�,µ↵ =

⇢
Ds,µ
�↵ when vs + Rs⌧µ = L

i
0 + ⌧µ0;

0 otherwise.
(10)

Based on the above derivations, the code has been extended to the TB basis. The sister program is called ir2tb. To run ir2tb, users
must provide two files: case_hr.dat and tbbox.in. The file called case_hr.dat, containing the TB parameters, may be generated
by the software Wannier90 [46,47] with symmetrization [48–50], or generated by users with a toy TB model, or generated from Slater-
Koster method [51] or discretization of k · p model onto a lattice [52]. The other file tbbox.in is the master input file for ir2tb. It
should be given consistently with the TB parameters in case_hr.dat. The tbbox.in for Bi2Se3 is given in Appendix A.1. In addition,
the example of electronic TB Hamiltonian for Bi2Se3 and the example of phononic TB Hamiltonian for CoSi are included in the archive
src_ir2tb_v2.tar.gz.

3. General process of the code

In the main text, we are mainly focused on irvsp, which is based on the PW basis with an interface to the VASP package [45]. The
key subroutines are summarized in Table 1. One can check more details for ir2tb and irrep_bcs.a in the Appendix. The program
ir2tb works for orthogonal TB Hamiltonians, e.g. the electronic or phononic TB Hamiltonians. The library irrep_bcs.a can be linked
to by other DFT packages.

3.1. Wavefunctions at k-points

In the VASP package, the all-electron wave-function is obtained by acting a linear operator T on the pseudo-wavefunction: | nki =
T
�� ̃nk

↵
. The linear operator can be written explicitly as: T = 1 +P

i
�|�ii � ���̃i

↵� hpi|, where |�ii (
���̃i
↵
) is a set of all-electron (pseudo)

partial waves around each atom and |pii is a set of corresponding projector functions on each atom within an augmentation region
(r < R0), where R0 is the core part for each atom. The pseudo-wavefunction is expanded in the plane waves:

 ̃nk(Er) ⌘ ⌦Er| ̃nk
↵ =

X

Gj

Cn,k+Gj e
i(k+Gj)·Er (11)

where Gj vectors are determined by the condition h̄2
2me

(k+Gj)2 < Ecutoff with a cutoff Ecutoff . It is worthy noting that
�� ̃nk

↵
are sufficient

for the calculations of the traces of MPs of SGOs.
Since the pseudo-wavefunctions

�� ̃nk
↵
are usually not normalized, they have to be renormalized before their traces can be computed

via Eq. (2). The coefficients (C
k+Gj ) are output in WAVECAR by VASP. In the program, they are read by the subroutine: wave_data.f90.

In the SOC case, the C
k+Gj," and C

k+Gj,# are stored in the complex variables coeffa(:) and coeffb(:). In the case without SOC, the
C
k+Gj are stored in coeffa(:), while coeffb(:) are invalid (set to be zero).

3.2. Space group operators of a 3D crystal

Instead of generating space group operators from a 3D crystal structure (i.e., POSCAR), the program reads the SGOs directly from
the standard output of VASP (i.e., OUTCAR), which is done by the subroutine: init.f90. In other words, the SGOs are generated by
the VASP package (e.g. with ISYM = 1 or 2 in INCAR for vasp.5.3.3), which are listed below the line of ‘Space group operators’: in
OUTCAR. Fig. 1 shows an example of Bi2Se3 for the SGOs of space group (SG) 166. They are given by Det (±1), !, and En (nx, ny, nz) and
v (v1t1,v2t2,v3t3) with t1, t2, t3 primitive lattice vectors. The �1 value of Det indicates that the operator is a roto-inversion. Actually,
the listed SGOs depend on the lattice vectors. Primitive lattice vectors (t1, t2, t3) and primitive reciprocal lattice vectors (g1, g2, g3) are
read from OUTCAR, also shown in Fig. 2 for Bi2Se3. It is worth noting that to be compatible with the CRTs in the BCS, the POSCAR
should be given in a standard way (see more details in Appendix A.3). The O(3) and SU(2) MPs are generated in the spin-1 (under the
basis of {x, y, z}) and spin-1/2 (under the basis of {", #}) spaces, respectively:

R(!, En) = Det · e�i!(En·EL), Lx =
 0 0 0
0 0 �i
0 i 0

!
, Ly =

 0 0 i
0 0 0
�i 0 0

!
, Lz =

 0 �i 0
i 0 0
0 0 0

!
; (12)

S(!, En) = e�i!(En·ES), Sx = �x
2 = 1

2

✓
0 1
1 0

◆
, Sy = �y

2 = 1
2

✓
0 �i
i 0

◆
, Sz = �z

2 = 1
2

✓
1 0
0 �1

◆
. (13)

In 3D crystals, it is more convenient to use MPs in the lattices of (t1, t2, t3) in real space and in reciprocal lattices of (g1, g2, g3) in
momentum space. They are given in the following convention:

Ev = t1v1 + t2v2 + t3v3 = (t1, t2, t3)

 
v1
v2
v3

!
, (t1, t2, t3) ⌘

 t1x t2x t3x
t1y t2y t3y
t1z t2z t3z

!
; (14)

4
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Fig. 1. Screenshot of OUTCAR, showing the space group operators of Bi2Se3 generated by VASP.

Fig. 2. Screenshot of OUTCAR, showing the lattice vectors and reciprocal lattice vectors of Bi2Se3 which are used in VASP.

Ek = k1g1 + k2g2 + k3g3 = (k1, k2, k3)

 
g1
g2
g3

!
,

 
g1
g2
g3

!
⌘
 g1x g1y g1z
g2x g2y g2z
g3x g3y g3z

!
. (15)

with

 
g1
g2
g3

!
(t1, t2, t3) = 2⇡I3⇥3

The rotational symmetry operators acting on the vectors are transformed as:

REv = (t1, t2, t3)Z

 
v1
v2
v3

!
, REk = (k1, k2, k3)Z�1

 
g1
g2
g3

!
; (16)

R(t1, t2, t3) = (t1, t2, t3)Z ) Z ⌘ (t1, t2, t3)�1R(t1, t2, t3) (17)

Thus, rotational MPs in the lattice vectors are 3 ⇥ 3 integer matrices (Z), which are defined in Eq. (17). Instead of the real R-matrices
in Cartesian coordinates in Eq. (12), the integer matrices, Z and Z�1, are actually stored and used throughout the code, which are all
set in the subroutine: init.f90.

If one wants to do some sub-space-group symmetry calculations, one can modify the SGOs in OUTCAR and give the correct space
group number accordingly. For example, if one only wants to know parity eigenvalues of the energy bands, one can change the list of
SGOs with only two lines (i.e., identity and inversion symmetry) and give space group #2 to run irvsp.

3.3. Little group of a certain k-point

The eigen-wavefunctions at a certain k-point only support the IRs of the little group of k, LG(k). Therefore, for any given k-point, the
program has to determine the k-little group LG(k) first. This is done in the subroutine: kgroup.f90. The LG(k) are defined by Eq. (1).
In the program, the integer matrices Z�1 and Eq. (16) in momentum space are used.

3.4. Character tables for k-little groups

Currently, there are two conventions of CRTs for k-little groups. In the first convention, the k points are labeled by the IRs of the
PNGs, since IRs of the space group can be expressed as IRs of the corresponding point group multiplied by a phase factor. They are
suitable either for symmorphic SGs, or the inner k-points (not on the BZ boundary/surface) for the non-symmorphic SGs. The CRTs of
PNGs are given in the Ref. [53,54], which have been implemented in the program irrep of the WIEN2k package [43,44]. In the second
convention, all the CRTs for k-points of all 230 SGs are listed on the BCS [42]. Therefore, the program irvsp works for all k-points in
230 SGs. The CRTs are retrieved from the inputs of the BCS, which are done by the subroutine: nonsymm.f90.

As an example, consider the � point of Bi2Se3. Fig. 3 shows the CRT of the point group D3d in the PNG convention. Fig. 4 shows
the CRT in the BCS convention. Both tables can be used to determine the IRs at � in SG 166. In the table of Fig. 4, the first and two
columns show the reality and the BCS labels of IRs, respectively. The following columns indicate the characters of different SGOs. The
reality of an IR is given by the definition [53,54]:

1
|G|

|G|X

j=1

� (G2
j ) =

8
<

:

1 potentially real , case (a)
0 essentially complex, case (b)

�1 pseudo-real , case (c)
(18)

where Gj is an element of the group G, and |G| is the rank of the group G. In a MSG, the group G is defined as the unitary part of the
MSG. In case (a), the IR is equivalent to its complex representation, and also equivalent to a real representation. In case (b), the IR is not
equivalent to its complex representation. In case (c), the IR is equivalent to its complex representation, but not to a real representation.

5
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Fig. 3. The character table of point group D3d , which is used to determine the IRs (i.e., PNG convention) for the energy bands at � of Bi2Se3 in irrep of the WIEN2k
package.

Fig. 4. The character table of � -little group in SG 166 on the BCS, which is used to determine the IRs (i.e., BCS convention) for the energy bands at � of Bi2Se3 in
the program irvsp.

In the type-II MSGs, including pure time-reversal symmetry (TRS), the existence of anti-unitary SGOs in the k-little group is indicated
at the beginning of the character table (Fig. 4). In the absence of SOC (integer spin), TRS doubles the degeneracy of IRs in cases (b) and
(c); while in the presence of SOC (half-integer spin), it doubles the degeneracy of the IRs in cases (a) and (b).

3.5. Determination of irreducible representations

After the normalization of the PW-based pseudo-wavefunctions in VASP, the traces of MPs of SGOs can be computed via Eq. (4), which
are done in the subroutine chrct.f90. By comparing the obtained traces and the characters of the CRTs, the IRs can be determined
(see different versions in Appendix A.5).

4. Capabilities of irvsp

In the study of the properties of a material, the determination of IRs of computed electron bands is of great interest to diagnose
the band crossing/anti-crossing, degeneracy and band topology. In the WIEN2k package, the program irrep classifies the IRs in PNG
symmetries, which then excludes the possibility to describe certain BZ surface k-points for nonsymmorphic crystals. Therefore, the
demand to determine the IRs for all the k-point in all 230 SGs is still unsatisfied. With the CRTs from the BCS, the program – irvsp – is
developed to meet this demand with the interface to the VASP package. The associated library – irrep_bcs.a – can be easily linked
to by other ab-initio packages. The obtained IRs are labeled in the convention of the BCS notation, which can be directly compared with
the elementary band representations (EBRs) of the TQC theory, to further check the topology of a set of bands in materials.

5. Installation and usage

In this section, we will show how to install and use the irvsp software package. This program is an open source free software
package. It is released on Github under the GNU Lesser General Public License, https://www.gnu.org/licenses/lgpl-3.0.html, and it can
be downloaded directly from the public code archive: https://github.com/zjwang11/irvsp/blob/master/src_irvsp_v2.tar.gz.

To build and install irvsp, only a Fortran 90 compiler is needed. The downloaded irvsp software package is likely a compressed
file with a zip or tar.gz suffix. One should uncompress it first, then move into the src_irvsp_v2 folder. After setting up the Fortran
compiler in the Makefile file, the executable binary irvsp can be compiled by typing the following command in the current directory
(src_irvsp_v2):

$ ./configure.sh
$ source ~/.bashrc
$ make
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Fig. 5. Electronic band structures of PdSb2 without strain (a), with 0.31% (b) and 0.62% (c) tensile strains. Panels (d-f) are the zoom-in plots of panels (a-c) near
the R point. In our calculations, the total number of electrons is 80. The different IRs at R are labeled by green triangles (R11+R11), orange squares (R10+R10)
and purple circles (R5+R6). The two crossing bands along R–X belong to S3 (yellow) and S4 (cyan), respectively. P [0.4912 ( 2⇡a ), 0.5000 ( 2⇡a ), 0.4912 ( 2⇡a )] and Q
[0.4722 ( 2⇡a ), 0.5000 ( 2⇡a ), 0.4722 ( 2⇡a )] are two points near the crossing point on the R–X line.

Before running irvsp, the user must provide two consistent files: WAVECAR and OUTCAR. The two files are generated by the VASP
package in fixed format. It is designed to be simple and user friendly. After a running of VASP with WAVECAR and OUTCAR output, the
program irvsp can be run immediately. Giving a correct space group number (sgn 2 [1, 230]) and a set of energy bands (from the
mth band to the nth band), the program can be executed by the following command:

$ irvsp -sg $sgn [-nb $m $n] > outir &

6. Examples

Very recently, the codes vasp2trace and CheckTopologicalMat have been designed for TQC in the Ref. [12]. However, they are not
suitable for non-maximal HSK points. In fact, vasp2trace is extracted from irvsp to interface with CheckTopologicalMat. Here,
we take topological materials PdSb2 and Bi as examples to show how to study topological properties of new materials with irvsp. The
necessary files for these materials are given as the examples in the archive src_irvsp_v2.tar.gz.

6.1. PdSb2

PdSb2 was predicted to be a candidate hosting sixfold-degenerate fermions because of nonsymmorphic symmetry [55,56]. The crystal
of PdSb2 is a cubic structure of SG 205. We adopt the experimental lattice constant a [57–59] and fully relax the coordinates of inner
atomic positions. In the obtained band structure (BS) of Fig. 5(a) along the high-symmetry lines, we note that there is a tiny gap (⇠ 10
meV) between two sixfold degeneracies at R. Then, we want to know the corresponding IRs of two sixfold degeneracies and how they
are going to evolve under strains. For this purpose, we performed the calculations with different tensile strains (i.e., �a/a = 0.31%
and �a/a = 0.62%). Their electronic band structures are shown in Fig. 5(b) and (c), respectively. Comparing with the strain-free BS in
Fig. 5(a), we find that the overall BS does not change very much, except for the R point. The zoom-in plots around R are shown in lower
panels of Fig. 5. The R point is a k-point with nonsymmorphic symmetry in SG 205, where IRs of the space group cannot be expressed
as IRs of the corresponding point group multiplied by a phase factor. By running irvsp, the IRs at R are obtained. Fig. 6(a–c) show the
results of IRs for the low-energy bands. The number of total electrons is 80 for PdSb2. It is shown that the energy ordering of electron
bands is changed at R under tiny strains.

The IRs at all the maximal HSK points can be computed directly by irvsp. The trace file – trace.txt will be generated if only
maximal HSK points are given in KPOINTS. By directly comparing these obtained IRs with the EBRs of the TQC theory (released on
the BCS) and solving the compatibility relations, we can find that it is a topological insulating phase without strain, while it is a
symmetry-enforced semimetallic phase with tiny tensile strains.

To further obtain the crossing points in the system, we computed the IRs along the R–X line (named S [u, 0.5, u] in units of 2⇡
a ). These

points are also non-symmorphic, which are on the boundary of the 3D BZ for SG 205. The CRT for the S point is listed in Fig. A.2. For
the P and Q points in Fig. 5(f) of the strained crystal, we show the results of obtained IRs in Fig. 7. At the P point, the 79–80 degenerate
bands are assigned to ‘‘S3+S3’’, while 81–82 degenerate bands are assigned to ‘‘S4+S4’’. However, at the Q point, the results are in
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Fig. 6. The IRs at R are determined by the program irvsp. The CRT of the R-little group is shown in Fig. A.1 in Appendix A.4. The first three columns stand for the
band indices, degeneracies, and the energies (without subtracting the Fermi energy EF ). The following columns indicate the traces (characters) of the corresponding
space group operators (listed as ‘‘E, 2, . . . , 24’’). The assigned IR labels are output to the right of the equality sign ‘‘=’’. The (a), (b), (c) panels are the obtained results
for the three crystal structures, respectively.

Fig. 7. The IRs are obtained by irvsp for P (a) and Q (b) as depicted in Fig. 5(f).

Table 2

The IRs at maximal HSK points obtained by irvsp for Bismuth.
‘‘(p)’’ indicates the degeneracy of the bands, while ‘‘[q]’’ indicates
the total number of the computed bands at the k-point.
HSK Six valence bands
GM GM8 (2); GM8 (2); GM4 GM5 (2); [6]
T T9 (2); T8 (2); T6 T7 (2); [6]
F F3 F4 (2); F5 F6 (2); F5 F6 (2); [6]
L L3 L4 (2); L5 L6 (2); L5 L6 (2); [6]

the opposite way. Without doing further calculations with a denser kmesh between P and Q points, we can still conclude that it is a
real 4-fold crossing along R–X on the BZ boundary, which is robust against SOC. The double degeneracy is due to the presence of TRS.
The symmetry #15 is the operator gy ⌘ {My|01

2
1
2 }. Therefore, the doubly-degenerate bands have the same gy eigenvalue ({S3, S3} or

{S4, S4}), and the 4-fold crossing point along R–X is protected by gy symmetry. As a result, the crossing 4-fold points actually form a
Dirac nodal ring on the BZ boundary. Considering the full symmetry of SG 205, we conclude that there are three Dirac nodal rings in
PdSb2 with tiny strains, which can be further checked in experiments in the future.

6.2. Bismuth

As aforementioned, with the IRs at maximal HSK points obtained by irvsp, we can further check the topology by comparing them
with the EBRs of the TQC theory. Here, we will take Bi as an example to briefly introduce the process. The element Bismuth has the
rhombohedral structure of SG 166. The maximum HSK points of SG 166 are listed on the BCS, as � (GM), T, F, L. After performing the
ab-initio calculations to obtain the eigen-wavefunctions at maximal HSK points, the obtained IRs of the occupied bands are given in
Table 2. From the TQC and BCS, the EBRs of SG 166 are obtained, as shown in Fig. 8. As there are only six valence bands, we can find
that they do not belong to any EBR induced from the 9d or 9e Wyckoff position. In the EBRs induced from the 3a and 3b Wyckoff
positions, we can find that the number of the pairs of F5F6 at F has to be the same as the total number of the IRs GM9 and GM6GM7

8
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Fig. 8. A complete list of the EBRs of space group 166 in the presence of SOC. Each EBR is defined by a Maximal Wyckoff site (nx) and an IR of its site-symmetry
group, which are indicated by the first and second rows, respectively. Then, the following rows present the IRs at the Maximal HSK points.

at � . In Bismuth, the obtained IRs have three IRs of F5F6, but neither GM9 nor GM6GM7. Therefore, the occupied bands of Bisumth
cannot be expressed as any sum of EBRs in SG 166. In other words, it has to be topological [7].

7. Conclusions

In summary, we present an open-source software package – irvsp – that determines the IRs of electronics states in the VASP. It is
very user-friendly and is written in Fortran 90/77, showing a powerful function to analyze the IRs for all the k-points in all 230 SGs,
including nonsymmorphic crystals. The associated library – irrep_bcs.a – can be interfaced with other DFT packages. We show how
to use it to identify IRs and further get the topological property for a new material. As an example, we explore a topological material
PdSb2, whose topology is very sensitive to the lattice parameter. Under tiny strains, it is identified as a four-fold Dirac nodal-line metal.
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Appendix

A.1. tbbox.in for Bi2Se3

case = soc ! lda or soc

proj:
orbt = 2
ntau = 5
0.39900000 0.39900000 0.39900000 1 3 ! x1, x2, x3, itau, iorbit
0.60100000 0.60100000 0.60100000 1 3
0.20600000 0.20600000 0.20600000 2 3
0.79400000 0.79400000 0.79400000 2 3
0.00000000 0.00000000 0.00000000 2 3
end projections

kpoint:
kmesh = 10
Nk = 4
0.00000000 0.00000000 0.00000000 ! k1: y1,y2,y3
0.50000000 0.50000000 0.50000000 ! k2
0.50000000 0.50000000 0.00000000 ! k3
0.00000000 0.50000000 0.00000000 ! k4
end kpoint_path

unit_cell:

9
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Table A.1

Besides the src_irvsp_v2.tar.gz code mainly discussed in the main text, there are more codes
developed, which are available in the repository: https://github.com/zjwang11/irvsp/. Different
versions of the codes are developed based on the different types of the WFs and conventions
of the CRTs.
WFs CRTs

PNG BCS
PW basis src_irvsp_v1.tar.gz src_irvsp_v2.tar.gz
TB basis src_ir2tb_v1.tar.gz src_ir2tb_v2.tar.gz

Table A.2

A brief summary of tbbox.in.
Comments Descriptions
! lda or soc lda: nspin = 1 (without SOC); soc: nspin = 2 (with SOC)
! x1,x2,x3,itau,iorbit Defining ⌧i = (x1t1, x2t2, x3t3), iorbit 2 {1, 3, 4, 5, 6, 7, 8, 9}
! k1: y1,y2,y3 Defining k1 = (y1g1, y2g2, y3g3); kpath is along k1 � k2 � · · · � kN .
! b1x b1y b1z; g1x g1y g1z Defining t1 = (b1xx̂, b1yŷ, b1z ẑ); g1 = 2⇡ (g1xx̂, g1yŷ, g1z ẑ)

! SN,Det,omega,nx,ny,nz,v1,v2,v3 Defining Os = {Rs|vs} with Rs = Det · e�i!(En·EL) and vs = (v1t1, v2t2, v3t3). SN stands for the sequential number.

1.194537707 -2.069000000 9.546666657 0.139523990 -0.241662639 0.034916201
1.194537707 2.069000000 9.546666657 0.139523990 0.241662639 0.034916201

-2.389075414 0.000000000 9.546666657 -0.279047979 0.000000000 0.034916201
1 1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
2 -1.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000
3 1.000000 180.000000 0.866025 0.500000 0.000000 0.000000 0.000000 0.000000
4 -1.000000 180.000000 0.866025 0.500000 0.000000 0.000000 0.000000 0.000000
5 1.000000 120.000000 0.000000 0.000000 -1.000000 0.000000 0.000000 0.000000
6 -1.000000 120.000000 0.000000 0.000000 -1.000000 0.000000 0.000000 0.000000
7 1.000000 179.999999 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000
8 -1.000000 179.999999 0.000000 1.000000 0.000000 0.000000 0.000000 0.000000
9 1.000000 120.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000

10 -1.000000 120.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000
11 1.000000 180.000000 0.866025 -0.500000 0.000000 0.000000 0.000000 0.000000
12 -1.000000 180.000000 0.866025 -0.500000 0.000000 0.000000 0.000000 0.000000

end unit_cell

A.2. The brief description of ir2tb

Based on the different types of the WFs and conventions of the CRTs, different versions of the codes are developed, as shown
in Table A.1. The program ir2tb is based on the TB WFs. BLAS and LAPACK linear algebra libraries are needed to diagonalize the TB
Hamiltonian. To compile ir2tb, one needs to copy the library irrep_bcs.a to the folder src_ir2tb_v2 and type the following
command:

$ make

The program ir2tb needs two input files: tbbox.in and case_hr.dat. The case_hr.dat file, containing the TB parameters in
Wannier90 format [46], may be generated by the software Wannier90 [47] with symmetrization [50], or generated by users with a toy
TB model, or generated from Slater-Koster method [51] or a discretization of k · p model onto a lattice [52].

The tbbox.in file provides detailed information about the TB Hamiltonian (i.e., the case_hr.dat file), which is summarized in
Table A.2. It is an essential input for the program ir2tb. The tag case = lda (case = soc) indicates that the TB Hamiltonian does not
(does) have the SOC effect. The lda/soc_hr.dat is needed accordingly. In the proj block, orbt = 1 or 2 indicates the convention
of the local orbital ordering on each atom. The local orbitals in convention 1 are listed in Table A.3, while those in convention 2 are in
the order as implemented in Wannier90. ntau indicates the total number of the atoms in the TB Hamiltonian, which also means how
many lines follow in this block. The local orbitals of the TB Hamiltonian are provided by : x1,x2,x3, itau, iorbit. x1,x2,x3 stand
for the positions of atoms: ⌧i = (x1t1, x2t2, x3t3); itau stand for the kinds of atoms; and iorbit stand for the total numbers of local
orbitals on different atoms. So far, iorbit is limited to the values of {1,3,5,4,6,7,8,9}, whose detailed orbital informations are provided
in Table A.3. In the case of case = soc, the local orbitals will be doubled automatically: the first half are spin-up and the second half
are spin-down. In the kpoint block, the k-path is given as k1 – k2 – . . . – kN with kmesh points on each segment. The unit_cell
block gives the lattice vectors and reciprocal lattice vectors in first three lines, followed by space group operators, which are the same
lines as irvsp reads in OUTCAR file.
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Table A.3

The local orbitals in convention 1 (i.e., orbt = 1) are given below. The vector EL is given in Eq. (12) in the main
text, while the vectors EP and EF are given in Eqs. (19)–(22) in Appendix A.2.
iorbit Local orbitals D-matrices in Eq. (7)

1 s D1 = 1
3 px, py, pz D3 = Det · e�i!(En·EL)

5 dxy, dyz , dzx, dx2�y2 , d3z2�r2 D5 = e�i!(En·EP)
4 s, px, py, pz D4 = D1 � D3

6 s, dxy, dyz , dzx, dx2�y2 , d3z2�r2 D6 = D1 � D5

8 px, py, pz , dxy, dyz , dzx, dx2�y2 , d3z2�r2 D8 = D3 � D5

9 s, px, py, pz , dxy, dyz , dzx, dx2�y2 , d3z2�r2 D9 = D1 � D3 � D5

7 fxyz , f5x3�xr2 , f5y3�yr2 , f5z3�zr2 , fx(y2�z2), fy(z2�r2), fz(x2�y2) D7 = Det · e�i!(En·EF )
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A.3. The standard settings for POSCAR and maximal HSK points

The standard (default) settings of POSCAR are listed as follows:

(a) unique axis b (cell choice 1) for SGs within the monoclinic system.
(b) obverse triple hexagonal unit cell for R SGs.
(c) the origin choice two – inversion center at (0,0,0) – for the centrosymmetric SGs.

Before one is actually doing the VASP calculations, we strongly suggest that one could run the phonopy program to get the space group
number and standardize the POSCAR with the following command:

$ phonopy --tolerance 0.01 --symmetry -c POSCAR
$ cp PPOSCAR POSCAR
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https://phonopy.github.io/phonopy/


J. Gao, Q. Wu, C. Persson et al. Computer Physics Communications 261 (2021) 107760

Fig. A.1. The CRT of R-little group in the BCS convention.

The maximal HSK points from the BCS are given in the conventional reciprocal lattice vectors, while the lattice vectors in VASP usually
are given in the primitive cell. The transformation depends on the type of the lattice. There are only seven different types of lattices,
i.e. P, C, B, A, R, F and I . In the X type, the primitive lattices (Ep1, Ep2, Ep3) are defined by a transformation matrix MX .

�Ep1 Ep2 Ep3
� = �Ec1 Ec2 Ec3

� · MX (23)

where Ec1, Ec2 and Ec3 are the standard conventional lattices. In the program, all the matrices MX are given as follows:

MP =
 1 0 0
0 1 0
0 0 1

!
; MC =

 0.5 0.5 0
�0.5 0.5 0
0 0 1

!
; MB =

 0.5 0 �0.5
0 1 0
0.5 0 0.5

!
; MA =

 1 0 0
0 0.5 �0.5
0 0.5 0.5

!
;

MR =
 2/3 �1/3 �1/3
1/3 1/3 �2/3
1/3 1/3 1/3

!
; MF =

 0 0.5 0.5
0.5 0 0.5
0.5 0.5 0

!
; MI =

 �0.5 0.5 0.5
0.5 �0.5 0.5
0.5 0.5 �0.5

!
.

A.4. The character tables for R-little group and S-little group

Figs. A.1 and A.2 show the character tables for R-little group and S-little group, respectively. At the k-point [(u, v, w) given in the

conventional reciprocal basis], the block x + iy
a b c in Fig. A.2 corresponds to a complex value of (x + iy) · exp[i⇡ (au + bv + cw)].

A.5. Other versions of irvsp

Four versions of irvsp are implemented, as shown in Table A.4. Version I works similarly as irrep in the WIEN2k package and
presents the IRs with PNG symmetries. This version can thus not classify the special k-points on the boundary of the Brillouin zone
of nonsymmorphic crystals, that is, when exp[�ik(Rsvt + vs)] 6= 1 for some Os and Ot in LG(k). Version II works for those k-points for
nonsymmorphic SGs, where version I does not work. Version III combines version I and II. In the (default) version IV, it works for all
the k-points and all 230 SGs in the convention of the BCS notation. One can use an optional flag -v to execute other versions of irvsp.

$ irvsp -sg $sgn [-v $nv] [-nb $m $n] > outir &

12
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Fig. A.2. The CRT of S-little group in the BCS convention.

Table A.4

Four versions of irvsp are implemented. The first column indicates the version number, the second column shows the convention
of reference CRTs, and the brief description is followed in the last column.
Version CRTs Brief description
Version I PNG It resembles an analogue of the program irrep in the WIEN2k package.
Version II BCS It works only for the k-points, where version I does not work.
Version III PNG&BCS It combines version I and version II.
Version IV (default) BCS It works for all the k-points and all 230 SGs, including nonsymmorphic

SGs. All the IRs are labeled in the convention of the BCS notation.

A.6. The library – irrep_bcs.a

The library irrep_bcs.a is developed to be interfaced with other DFT packages. Calling the main subroutine irrep_bcs can output
the IRs labeled in the convention of BCS notation. The program ir2tb is an example of calling the library mode. In other words, ir2tb
has to be compiled by linking to the library irrep_bcs.a. The source files of the library irrep_bcs.a are released in the public
archive: https://github.com/zjwang11/irvsp/blob/master/lib_irrep_bcs.tar.gz

To compile the library, one should first uncompress the archive lib_irrep_bcs.tar.gz, then move into the folder lib_irrep
_bcs and type the following command:

$ ./configure.sh
$ source ~/.bashrc
$ make lib

The first two commands add an environment variable IRVSPDATA and the third command creates the library irrep_bcs.a in
the current folder. There are three main subroutines: irrep_bcs, pw_setup, tb_setup in the library. Their headers and detailed
descriptions are given below (dp = 8).

subroutine irrep_bcs(sgn, num_sym, &
rot_input , tau_input , SO3_input , SU2_input , &
KKK, WK, kphase, &
num_bands , m, n, ene_bands , &
spinor, dim_basis , num_basis , &
coeffa, coeffb, &
Gphase_pw , rot_vec_pw , rot_mat_tb)

• integer, intent(in) :: sgn
The space group number.

• integer, intent(in) :: num_sym
The number of space-group operations Os ⌘ {Rs|vs} (module the integer lattice translations).

• integer, dimension(3,3,num_sym), intent(in) :: rot_input
The rotation part Rs of space-group operations Os with respect to primitive lattice vectors [i.e., the matrix Z in Eq. (17)].

• real(dp), dimension(3,num_sym), intent(in) :: tau_input
The translation part vs of space-group operations Os with respect to primitive lattice vectors.

• real(dp), dimension(3,3,num_sym), intent(in) :: SO3_input
The Rs given in Cartesian coordinates [i.e., R(!, En) in Eq. (12)].

• complex(dp), dimension(2,2,num_sym), intent(in) :: SU2_input
The Rs given in spin-1/2 space [i.e., S(!, En) in Eq. (13)].

13
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• integer, intent(in) :: KKK
The sequential number of the given k-point.

• real(dp), dimension(3), intent(in) :: WK
The coordinates of the k-point with respect to primitive reciprocal lattice vectors.

• complex(dp), dimension(num_sym), intent(in) :: kphase
The k-dependent phase factors due to the translation part vs [i.e., e�ik·vs in Eq. (4) or e�i(Rsk·vs) in Eq. (9)].

• integer, intent(in) :: num_bands
The total number of bands.

• integer, intent(in) :: m, n
The IRs of the set of bands [m, n] are computed.

• real(dp), dimension(num_bands), intent(in) :: ene_band
The energy of the bands at the k-point.

• logical, intent(in) :: spinor
Set to .true. if underlying electronic structure calculation has been performed with spinor wavefunctions.

• integer, intent(in) :: dim_basis
The reserved number of the PW/TB basis.
If rot_vec_pw is given, dim_basis >= num_basis for any k-point.
If rot_mat_tb is given, one should set dim_basis = num_basis.

• integer, intent(in) :: num_basis
The number of PW or orthogonal TB basis for the given k-point (note: the number of PWs for different k-points are usually
different).

• complex(dp), dimension(dim_basis,num_bands),intent(in) :: coeffa
The coefficients of spin-up part of wave functions at the given k-point (note: only coeffup_basis(1:num_basis,
1:num_bands) is nonzero).

• complex(dp), dimension(dim_basis,num_bands),intent(in) :: coeffb
The coefficients of spin-down part of wave functions at the given k-point if spinor is .true. (note: only coeffdn_basis
(1:num_basis, 1:num_bands) is nonzero).

• complex(dp), dimension(dim_basis,num_bands),intent(in), optional :: Gphase_pw
The phase factors dependent on the PW vectors [i.e., e�iGj0 ·vs in Eq. (4)].

• integer(dp), dimension(dim_basis,num_bands),intent(in), optional :: rot_vec_pw
The transformation vectors of space-group operations Os, which send the jth PW to the j0th PW [i.e., Gj0 ⌘ Rs(k+Gj)�k in Eq. (4)].

• integer(dp), dimension(dim_basis,dim_basis,num_bands),intent(in), optional :: rot_mat_tb
The transformation matrices of space-group operations Os in the orthogonal TB basis [i.e., V (Rsk � k)D in Eq. (9)].

subroutine pw_setup(WK, lattice, &
num_sym, det, angle, axis, tau, &
dim_basis , num_basis , Gvec, &
rot, SO3, SU2, &
kphase, Gphase_pw , rot_vec_pw)

• real(dp), dimension(3), intent(in) :: WK
The coordinates of the k-point with respect to primitive reciprocal lattice vectors.

• real(dp), dimension(3,3), intent(in) :: lattice(3,3)
The primitive lattice vectors in Cartesian coordinates [i.e., (t

1

, t
2

, t
3

) in Eq. (14)].
• integer, intent(in) :: num_sym

The number of space-group operations Os ⌘ {Rs|vs} (module the integer lattice translations).
• real(dp), dimension(num_sym), intent(in) :: det

The determination of the rotation part Rs of space-group operations Os [i.e., Det in Eq. (12)].
• real(dp), dimension(num_sym), intent(in) :: angle

The rotation angle of space-group operations Os [i.e., ! in Eq. (12)].
• real(dp), dimension(3,num_sym), intent(in) :: axis

The rotation axis of space-group operations Os in Cartesian coordinates[i.e., En in Eq. (12)].
• real(dp), dimension(3,num_sym), intent(in) :: tau

The translation part vs of space-group operations Os with respect to primitive lattice vectors.
• integer, intent(in) :: dim_basis

The reserved number of the PW basis (dim_basis >= num_basis).
• integer, intent(in) :: num_basis

The number of the PWs for the given k-point (note: num_basis for different k-points are usually different).
• integer, dimension(3, dim_basis), intent(in) :: Gvec

The plane-wave G-vector with respect to reciprocal lattice vectors [i.e., Gj in Eq. (3)].
• integer, dimension(3,3,num_sym), intent(out) :: rot

The rotation part Rs of Os with respect to primitive lattice vectors [i.e., the matrix Z in Eq. (17)].
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• real(dp), dimension(3,3,num_sym), intent(out) :: SO3
The Rs given in Cartesian coordinates [i.e., R(!, En) in Eq. (12)].

• complex(dp), dimension(2,2,num_sym), intent(out) :: SU2
The Rs given in spin-1/2 space [i.e., S(!, En) in Eq. (13)].

• complex(dp), dimension(num_sym), intent(out) :: kphase
The k-dependent phase factors due to the translation part vs [i.e., e�ik·vs in Eq. (4)].

• complex(dp), dimension(dim_basis,num_bands), intent(out) :: Gphase_pw
The phase factors dependent on the PW vectors [i.e., e�iGj0 ·vs in Eq. (4)].

• integer(dp), dimension(dim_basis,num_bands), intent(out) :: rot_vec_pw
The transformation vectors of Rs, which send the jth PW to the j0th PW [i.e., Gj0 ⌘ Rs(k + Gj) � k in Eq. (4)].

subroutine tb_setup(WK, lattice, &
num_sym, det, angle, axis, tau, &
num_atom , atom_position , &
dim_basis , num_basis , angularmom , orbt, &
rot, SO3, SU2, &
kphase, rot_mat_tb)

• real(dp), dimension(3), intent(in) :: WK
The coordinates of the k-point with respect to primitive reciprocal lattice vectors.

• real(dp), dimension(3,3), intent(in) :: lattice(3,3)
The primitive lattice vectors in Cartesian coordinates [i.e., (t

1

, t
2

, t
3

) in Eq. (14)].
• integer, intent(in) :: num_sym

The number of space-group operations Os ⌘ {Rs|vs} (module the integer lattice translations).
• real(dp), dimension(num_sym), intent(in) :: det

The determination of the rotation part Rs of space-group operations Os [i.e., Det in Eq. (12)].
• real(dp), dimension(num_sym), intent(in) :: angle

The rotation angle of space-group operations Os [i.e., ! in Eq. (12)].
• real(dp), dimension(3,num_sym), intent(in) :: axis

The rotation axis of space-group operations Os in Cartesian coordinates [i.e., En in Eq. (12)].
• real(dp), dimension(3,num_sym), intent(in) :: tau

The translation part vs of space-group operations Os with respect to primitive lattice vectors.
• integer, intent(in) :: num_atom

The number of atoms in the TB Hamiltonian.
• real(dp), dimension(3, num_atom), intent(in) :: atom_position

The coordinates of atoms with respect to primitive lattice vectors [i.e., ⌧µ in Eq. (6)].
• integer, intent(in) :: dim_basis

The reserved number of the TB basis (dim_basis = num_basis).
• integer, intent(in) :: num_basis

The number of orthogonal local orbitals for the k-point.
• integer, dimension(num_atom), intent(in) :: angularmom

The local orbital information on each atom. Detailed explanations can be found in Table A.3.
• integer, intent(in) :: orbt

The convention of the local orbitals on each atom.
If orbt = 1, local orbitals are in the order of Table A.3.
If orbt = 2, local orbitals are in the order as implemented in Wannier90

• integer, dimension(3,3,num_sym), intent(out) :: rot
The rotation part Rs of Os with respect to primitive lattice vectors [i.e., the matrix Z in Eq. (17)].

• real(dp), dimension(3,3,num_sym), intent(out) :: SO3
The Rs given in Cartesian coordinates [i.e., R(!, En) in Eq. (12)].

• complex(dp), dimension(2,2,num_sym), intent(out) :: SU2
The Rs given in spin-1/2 space [i.e., S(!, En) in Eq. (13)].

• complex(dp), dimension(num_sym), intent(out) :: kphase
The k-dependent phase factors due to the translation part vs [i.e., e�i(Rsk·vs) in Eq. (9)].

• integer(dp), dimension(dim_basis,dim_basis,num_bands), intent(out) :: rot_mat_tb
The transformation matrices of Rs in the orthogonal TB basis [i.e., V (Rsk � k)D in Eq. (9)].
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