Skip to content
People
Dong Su

  
Education:
 

Ph. D in Condensed Matter Physics (thesis at BLEM, Institute of Physics, Chinese Academy of Sciences) 
Nanjing University, China, Dec. 2003 

B.Sc. in Physics Nanjing University, China, July 1998 

Research Experience: 

Professor-
Institute of Physics, Chinese Academy of Sciences.
Aug. 2019-

Scientist with continuing appointment (tenure equivalent):

Center for Functional Nanomaterials,
Brookhaven National Laboratory; Oct. 2015- Aug. 2019
 
Group Leader: March 2019- Aug. 2019

Adjunct Professor:
Department of Materials Science and Chemical Engineering,
Stony Brook University; May, 2011-
Aug. 2019 

Assistant ScientistAssociate Scientist and Scientist:
Center for Functional Nanomaterials, Brookhaven National Laboratory;
June 2008- Sept.2015
 

Assistant Research Scientist:
Department of Physics, Arizona State University;
Sept. 2007~June 2008
 

Postdoc Research Associate:
Department of Physics, Arizona State University; Nov. 2006~Aug. 2007 
Department of Materials Science and Engineering, University of Illinois, at Urbana-Champaign,Dec. 2005~Nov. 2006,
Laboratory of Ceramics, Ecole Polytechnique Fédérale de Lausanne(EPFL), Switzerland,Jan. 2004~Nov. 2005

Research Areas:·      

 

  1. Developing TEM techniques (diffractive contrast imaging, HRTEM, STEM, and EELS etc.)·      
  2. Energy Related Materials (Electrode materials for batteries, electro-catalysts)·      
  3. Functional oxides for electronic devices and for energy storage

Selected Publications (total publications >400, and H factor ~125 (google); scholar website ):

     
    Recent research papers:

 

  1. Atomic Structure Evolution of Pt–Co Binary Catalysts: Single Metal Sites versus Intermetallic Nanocrystals, Advanced Materials, (2021), link
  2. Direct Observation of Defect‐aided Structural Evolution in Ni‐rich Layered Cathode, Angewandte  Chemie,  (2020), link
  3. Revealing Reaction Pathways of Collective Substituted Iron Fluoride Electrode for Lithium Ion Batteries, ACS Nano, 14, 10276 (2020), link
  4. Surface Regulation Enables High Stability of Single-Crystal Lithium-Ion Cathodes at High Voltage, Nature Communications, 11:3050(2020), link
  5. In Situ Electron Microscopy Investigation of Sodiation of Titanium Disulfide Nanoflakes, ACS Nano, 13,9421 (2019), link
  6. Phase Evolution of Conversion-type Electrode for Lithium Ion Batteries, Nature Communications, 10:2224 (2019),link
  7. Tungsten‐Doped L10‐PtCo Ultrasmall Nanoparticles as High‐Performance Fuel Cell Cathode, Angewandte  Chemie, 131,  (2019), link
  8. High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled Via an Intercalation Extrusion Reaction, Nature Communications, 8:2324 (2018),link
  9. Ordered Pt3Co Intermetallic Nanoparticles Derived from Metal-organic Frameworks for Oxygen Reduction,Nano Letters, 18, 4162(2018), link
  10. Strain Coupling of Conversion-type Fe3O4 Thin Film for Lithium Ion Battery, Angewandte  Chemie, 56, 7813(2017), link 
  11. Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries,Advanced Functional Materials, 27, (2017), link
  12. Biaxially Strained PtPb/Pt Core/Shell Nanoplate Boosts Oxygen Reduction Catalysis, Science, 353,1410(2016), link
  13. Visualizing Non-Equilibrium Lithiation of Spinel Oxide via In Situ Transmission Electron Microscopy,  Nature Communications, 7:11441 (2016), link

    Recent invited review papers:

  1. Moiré Fringe Method via Scanning Transmission Electron Microscopy,Small Methods, (2021) link:https://doi.org/10.1002/smtd.202101040
  2. Structural Changes of Intermetallic Catalysts under Reaction Conditions, Small Structures, (2021) link:https://doi.org/10.1002/sstr.202100011
  3. Deep Learning Analysis on Microscopic Imaging in Materials Science, Materials Today Nano, (2020) linkhttps://doi.org/10.1016/j.mtnano.2020.100087
  4. Supported and coordinated single metal site electrocatalysts, Materials Today, (2020),link: https://doi.org/10.1016/j.mattod.2020.02.019
  5. In Situ Transmission Electron Microscopy on Energy‐Related Catalysis, Advanced Energy Materials, (2019), linkhttps://doi.org/10.1002/aenm.201902105
  6. In‐situ structural characterizations of electrochemical intercalation of graphite compounds, Carbon Energy, (2019),linkhttps://doi.org/10.1002/cey2.21
  7. Atomic Arrangement Engineering of Metallic Nanocrystals for Energy-Conversion Electrocatalysis, Joule, (2019),linkhttps://doi.org/10.1016/j.joule.2019.03.014
  8. Advanced Electron Microscopy Characterization of Nanomaterials for Catalysis." Green Energy & Environment, (2017), linkhttps://doi.org/10.1016/j.gee.2017.02.001

 

Email: dongsu@iphy.ac.cn