Skip to content

Hydrodynamics of topological spin textures and applications

Date: 2020-11-12
Time: 14:00
Venue: Room M830
Speaker: Shu Zhang

(UCLA)

Abstract: Topological spin textures, such as domain walls in one dimension, vortices in two dimensions and magnetic hedgehogs in three dimensions, are promising candidates for nonlocal transport due to their stability against local fluctuations. They follow general topological conservation laws, based on which hydrodynamic theories can be formulated. In this talk, I will introduce the physical principles to drive, transport, and detect topological spin textures, and demonstrate their potential applications in experimentally viable proposals. In particular, I will give three examples: a promising all-spin hardware implementation of neuromorphic computing utilizing domain walls in quasi-one-dimensional antiferromagnets; an energy-storage proposal based on the free energy stored in winding textures, which can be controlled via a vorticity flow; and a scheme for three-dimensional nonlocal transport of magnetic hedgehogs.

If time permits, I will briefly talk about a magnetoelastic coupling induced topological structure in the hybridized magnon-phonon bands in two dimensional antiferromagnets and its thermal Hall signatures.

 

Host: Yi Zhou (82649925)

 

Contact: Zhicong Bian (82649414)